【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.

【答案】

【解析】

根據(jù)點(diǎn)Cm,n)(m≠n)為坐標(biāo)軸上一點(diǎn),得到點(diǎn)C的橫縱坐標(biāo)有一個為0,根據(jù)三角形的面積公式列方程即可得到結(jié)論.

解:

A點(diǎn)的坐標(biāo)為 ,B點(diǎn)的坐標(biāo)為

OA=3OB=2,

設(shè)C點(diǎn)在x軸上的坐標(biāo)為

BC=

SABC= ×3×=3

=2

=4, =0

∵(0,0)點(diǎn)是坐標(biāo)原點(diǎn),

C點(diǎn)在x軸上的坐標(biāo)為 ;

設(shè)C點(diǎn)在y軸上的坐標(biāo)為

SABC=× ×2=3

=3

解得: =6 =0,

∵(0,0)點(diǎn)是坐標(biāo)原點(diǎn),

C點(diǎn)在y軸上的坐標(biāo)為
C點(diǎn)坐標(biāo)為(40)或(0,6.
故答案為:(0,6)或(4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作AC的垂線交AC的延長線于點(diǎn)E,連接BC交AD于點(diǎn)F.

(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4cm,點(diǎn)E、F同時從C點(diǎn)出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運(yùn)動,到點(diǎn)A時停止運(yùn)動.設(shè)運(yùn)動時間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨(dú)施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨(dú)完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費(fèi)用為6500乙隊每天的施工費(fèi)用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過第一象限內(nèi)一點(diǎn)A,且OA4過點(diǎn)AABx軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到△CBD,則點(diǎn)C的坐標(biāo)為(

A. ,2 B. ,1

C. -2, D. -1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點(diǎn)EAB延長線上一點(diǎn),連接并延長交AD延長線于點(diǎn),.(1)求證:;

1

2)如圖2,連接于點(diǎn),連接,若的角平分線,的角平分線,過點(diǎn)于點(diǎn), 求證:

2備用圖

3)在(2)的條件下,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

ab的值;

治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀解題過程,回答問題.

如圖,OC在∠AOB內(nèi),AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).

:O點(diǎn)作射線OM,使點(diǎn)M,O,A在同一直線上.

因為∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5°,CD=8cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案