【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;
(2)知識探究:
①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關系(不需要寫出證明過程);
②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關系;
(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
【答案】(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.②CE+CF=BC(3)
【解析】分析:(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證.(2)由特殊到一般,證明△CAE′∽△CAE,從而可以得到EC、CF與BC的數(shù)量關系.(3) 連接BD與AC交于點H,利用三角函數(shù)BH ,AH,CH的長度,最后求BC長度.
詳解:
(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/d76d152670f6452b8f83f62ba9f41a35.png]
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知識探究:
①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.
②CE+CF=BC.
理由如下:
過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/f233fd78cd694e2aa6ff6f6aea848566.png]
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/db33a252ee584146a248213b3c17919b.png]
(3)連接BD與AC交于點H,如圖所示:
在Rt△ABH中,∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關系,并證明你的結論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點的坐標
(3)如圖3,點C(0,3),Q、A兩點均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:把形如的二次三項式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即.例如:是的一種形式的配方;所以,,,是的三種不同形式的配方(即“余項”分別是常數(shù)項、一次項、二次項).
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,寫出三種不同形式的配方;
(2)已知,求的值;
(3)已知,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分線交AC于點D,E是AB上一點,且BE=BC,CF∥ED交BD于點F,連接EF,ED.
(1)求證:四邊形CDEF是菱形.
(2)當∠ACB= 度時,四邊形CDEF是正方形,請給予證明;并求此時正方形的邊長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某人到一家快遞公司辦理環(huán)江香米(簡稱香米)的快遞托運,重量為千克.快遞公司收取托運費方案如下:
凡物品重量不超過10千克的,按2元/千克收取托運費;當物品重量超過10千克的,超出部分按3元/千克加收托運費.
(1)寫出千克香米的托運費的表達式 (用含字母的式子表示);
(2)若托運香米重量為千克時,求出這筆托運費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教育部明確要求中小學生每天要有2小時體育鍛煉,周末朱諾和哥哥在米的環(huán)形跑道上騎車鍛煉,他們在同一地點沿著同一方向同時出發(fā),騎行結束后兩人有如下對話:
朱諾:你要分鐘才能第一次追上我.
哥哥:我騎完一圈的時候,你才騎了半圈!
(1)請根據(jù)他們的對話內容,求出朱諾和哥哥的騎行速度(速度單位:米/秒);
(2)哥哥第一次追上朱諾后,在第二次相遇前,再經(jīng)過多少秒,朱諾和哥哥相距米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com