【題目】如圖,已知直線.這兩直線之間一點(diǎn).
(1)如圖1,若與的平分線相交于點(diǎn),若,求的度數(shù).
(2)如圖2,若與的平分線相交于點(diǎn),與有何數(shù)量關(guān)系?并證明你的結(jié)論.
(3)如圖3,若的平分線與的平分線所在的直線相交于點(diǎn),請直接寫出與之間的數(shù)量關(guān)系.
【答案】(1)∠ADB=50°;(2)∠ADB=180°-∠ACB,證明見解析;(3)∠ADB=90°-∠ACB.
【解析】
(1)如圖1,根據(jù)平行線的性質(zhì)得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根據(jù)角平分線的定義得到,即可得到結(jié)論;
(2)根據(jù)平行線的性質(zhì)得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根據(jù)角平分線的定義得到,根據(jù)平角的定義即可得到結(jié)論;
(3)根據(jù)平行線的性質(zhì)得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根據(jù)平行線的定義得到,根據(jù)四邊形的內(nèi)角和和角的和差即可得到結(jié)論.
(1)如圖1,過C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠BDH,
∠MAC=∠ACG,∠EBC=∠BCG,
∵∠MAC與∠EBC的平分線相交于點(diǎn)D,
∴,
∴;
∵∠ACB=100°,
∴∠ADB=50°;
(2)如圖2,過C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠BDH,
∠NAC=∠ACG,∠FBC=∠BCG,
∵∠MAC與∠EBC的平分線相交于點(diǎn)D,
∴
∴
,
∴;
(3)如圖3,過C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠
∠NAC=∠ACG,∠FBC=∠BCG,
∵∠MAC與∠FBC的平分線相交于點(diǎn)D,
∴
∵
.
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一股民在上星期五買進(jìn)某公司股票1000股,每股27元,下表為本星期內(nèi)每日該股票的漲跌情況單位:元
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
星期三收盤時,每股多少元?
本星期內(nèi)每股最低價多少元?
本周星期幾拋售,獲利最大,最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線ON、OE、OS、OW分別表示從點(diǎn)O出發(fā)北、東、南、西四個方向,點(diǎn)A在點(diǎn)O的北偏東45°方向,點(diǎn)B在點(diǎn)O的北偏西30°方向.
(1)畫出射線OB,若∠BOC與∠AOB互余,請?jiān)趫D1或備用圖中畫出∠BOC;
(2)若OP是∠AOC的角平分線,直接寫出∠AOP的度數(shù)(不需要計算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當(dāng)△ABC滿足條件時,四邊形DAEF是矩形;
②當(dāng)△ABC滿足條件時,四邊形DAEF是菱形;
③當(dāng)△ABC滿足條件時,以D、A、E、F為頂點(diǎn)的四邊形不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我校某班同學(xué)隨機(jī)抽取的我國100座城市2017年某天當(dāng)?shù)豴m2.5值的情況的條形統(tǒng)計圖,那么本次調(diào)查中,PM2.5值的中位數(shù)為微克/立方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC上一點(diǎn),BE=2CE,連接DE,F(xiàn)為DE中點(diǎn),以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點(diǎn)D順時針旋轉(zhuǎn)得△DF′G′,G′恰好落在BG的延長線上,連接F′G,若BG=2 ,則S△GF′G′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對我校七年級(1)班喜歡什么球類運(yùn)動的調(diào)查,下列圖形中的左圖是小明對所調(diào)查結(jié)果的條形統(tǒng)計圖.
(1)問七年級(1)班共有多少學(xué)生?
(2)請你改用扇形統(tǒng)計圖來表示我校七年級(1)班同學(xué)喜歡的球類運(yùn)動.
(3)從統(tǒng)計圖中你可以獲得哪些信息?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,交于點(diǎn),交于點(diǎn)
(1)當(dāng)所放位置如圖①所示時,則與的數(shù)量關(guān)系為_______;請說明理由.
(2)當(dāng)所放位置如圖②所示時,與的數(shù)量關(guān)系為________;
(3)在(2)的條件下,若與交于點(diǎn)0,且,,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com