【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于,兩點,與軸分別交于兩點,且

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)若點與點關(guān)于軸對稱,連接,求的面積.

【答案】1;(218.

【解析】

1)先求出B點坐標,再用待定系數(shù)法求一次函數(shù)的解析式,再求出C點坐標,用待定系數(shù)法求反比例函數(shù)解析式;
2)先由對稱性質(zhì)求E點坐標,再聯(lián)立方程組求得F點坐標,最后根據(jù)三角形面積公式求面積.

解:(1)∵A0-3
OA=3,
OA=OB
OB=2,
B-2,0).

代入一次函數(shù),得,解得

一次函數(shù)的解析式為

在一次函數(shù)的圖像上,

在反比例函數(shù)的圖像上,

反比例函數(shù)的解析式為

2與點關(guān)于軸對稱,,

,

聯(lián)立解得

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形邊上分別任取一點,,且,、相交于點.下列四個結(jié)論:①若,則;②若,,則;③;④若,則的最小值為,其中正確的是(

A.①②④B.①③④C.②③④D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知EK垂直平分BC,垂足為D,ABEK相交于點F,連接CF.求證:∠AFE=CFD.

(2)如圖2,在RtGMN中,∠M=90°,PMN的中點.

①用直尺和圓規(guī)在GN邊上求作點Q,使得∠GQM=PQN(保留作圖痕跡,不要求寫作法);

②在①的條件下,如果∠G=60°,那么QGN的中點嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級6個班的180名學生即將參加北京市中學生開放性科學實踐活動送課到校課程的學習.學習內(nèi)容包括以下7個領(lǐng)域:A.自然與環(huán)境,B.健康與安全,C.結(jié)構(gòu)與機械,D.電子與控制,E.數(shù)據(jù)與信息,F(xiàn).能源與材料,G.人文與歷史.為了解學生喜歡的課程領(lǐng)域,學生會開展了一次調(diào)查研究,請將下面的過程補全.

收集數(shù)據(jù)學生會計劃調(diào)查30名學生喜歡的課程領(lǐng)域作為樣本,下面抽樣調(diào)查的對象選擇合理的是  ;(填序號)

①選擇七年級1班、2班各15名學生作為調(diào)查對象

②選擇機器人社團的30名學生作為調(diào)查對象

③選擇各班學號為6的倍數(shù)的30名學生作為調(diào)查對象

調(diào)查對象確定后,調(diào)查小組獲得了30名學生喜歡的課程領(lǐng)域如下:

A,C,D,D,G,G,F(xiàn),E,B,G,

C,C,G,D,B,A,G,F(xiàn),F(xiàn),A,

G,B,F(xiàn),G,E,G,A,B,G,G

整理、描述數(shù)據(jù)整理、描述樣本數(shù)據(jù),繪制統(tǒng)計圖表如下,請補全統(tǒng)計表和統(tǒng)計圖.

某校七年級學生喜歡的課程領(lǐng)域統(tǒng)計表

課程領(lǐng)域

人數(shù)

A

4

B

4

C

3

D

3

E

2

F

 4 

G

 10 

合計

30

分析數(shù)據(jù)、推斷結(jié)論請你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次送課到校的課程領(lǐng)域,你的推薦是  (填A(yù)﹣G的字母代號),估計全年級大約有  名學生喜歡這個課程領(lǐng)域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)與反比例函數(shù)在同一平面直角坐標系中的圖象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx與雙曲線yk0,x0)交于點A,將直線yx向上平移2個單位長度后,與y軸交于點C,與雙曲線交于點B,若OA3BC,則k的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小澤和小帥兩同學分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會實踐活動.如圖折線和線段分別表示小澤和小帥離甲地的距離(單位:千米)與時間(單位:小時)之間函數(shù)關(guān)系的圖象,則當小帥到達乙地時,小澤距乙地的距離為_________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設(shè).某汽車銷售公司2016年盈利1500萬元,到2018年盈利2160萬元,且從2016年到2018年,每年盈利的年增長率相同.

1)求每年盈利的年增長率;

2)若該公司盈利的年增長率繼續(xù)保持不變,那么2019年該公司盈利能否達到2500萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,點上,的切線,于點,延長線上一點,于點,連接,

1)求證:平分

2)若,

①求的度數(shù);

②若的半徑為2,求線段的長.

查看答案和解析>>

同步練習冊答案