【題目】如圖,△ABC的頂點坐標分別為A(0,1)、B(3,3)、C(1,3).
(1) 畫出△ABC關(guān)于點O的中心對稱圖形△A1B1C1
(2) 畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B2C2,直接寫出點C2的坐標為______.
(3) 若△ABC內(nèi)一點P(m,n)繞原點O逆時針旋轉(zhuǎn)90°的對應點為Q,則Q的坐標為______.
【答案】(1)作圖見解析;(2)作圖見解析,(﹣3,1);(3)(﹣n,m).
【解析】
(1)根據(jù)關(guān)于原點對稱的點的坐標特征寫出A1、B1、C1的坐標,然后描點連線即可;
(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應點A2、B2、C2,從而得到點C2的坐標;
(3)利用(2)中對應點的規(guī)律寫出Q的坐標.
(1)如圖,△A1B1C1為所作;
(2)如圖,△A2B2C2為所作,點C2的坐標為(﹣3,1);
(3)若△ABC內(nèi)一點P(m,n)繞原點O逆時針旋轉(zhuǎn)90°的對應點為Q,則Q的坐標為(﹣n,m).
故答案為:(﹣3,1),(﹣n,m).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,
(1)如果△ABC角平分線BD、CE相交與點O,則∠BOC_________。
(2)如果△ABC的高BD、CE相交與點O,求∠BOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC、BD分別是∠BAD、∠ABC的平分線,且AC交BF于點C,BD交AE于點D,連接CD.求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°得到△AB1C1.
(1)在正方形網(wǎng)格中,作出△AB1C1;(不要求寫作法)
(2)設網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉(zhuǎn)過程中線段BC所掃過的圖形,然后求出它的面積.(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1) (-1)0+2-2-(-1)2012 (2)(2x2y)2 ·(-6xy4)÷(24x4y5)
(3)x 2-(x+2)(x-2) (4)(3-2x)(3+2x)+(2x-1)2
(5)(x-2)(x+2)-(x+1)(x-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F(xiàn)是BA延長線上一點,若∠CDB=∠BFD.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P是正方形ABCD邊AB上一點(不與A、B重合),連接PD并將線段PD繞點P順時針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com