【題目】如圖,點(diǎn)C是AB的中點(diǎn),AD=CE,CD=BE.
(1)求證:△ACD≌△CBE;
(2)連接DE,求證:四邊形CBED是平行四邊形.

【答案】
(1)證明:∵點(diǎn)C是AB的中點(diǎn),

∴AC=BC;在△ADC與△CEB中,

∴△ADC≌△CEB(SSS)


(2)證明:連接DE,如圖所示:

∵△ADC≌△CEB,

∴∠ACD=∠CBE,

∴CD∥BE,

又∵CD=BE,

∴四邊形CBED是平行四邊形.


【解析】(1)由SSS證明證明△ADC≌△CEB即可;(2)由全等三角形的性質(zhì)得出得到∠ACD=∠CBE,證出CD∥BE,即可得出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線(xiàn)互相平分的四邊形是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn) 分別與x軸、y軸交于點(diǎn)B、C,且與直線(xiàn) 交于點(diǎn)A.

(1)分別求出點(diǎn)A、B、C的坐標(biāo);
(2)若D是線(xiàn)段OA上的點(diǎn),且△COD的面積為12,求直線(xiàn)CD的函數(shù)表達(dá)式;
(3)在(2)的條件下,設(shè)P是射線(xiàn)CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線(xiàn)段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過(guò)P、O兩點(diǎn)的二次函數(shù)y1和過(guò)P、A兩點(diǎn)的二次函數(shù)y2的圖象開(kāi)口均向下,它們的頂點(diǎn)分別為B、C,射線(xiàn)OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )

A.
B.
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(3,0),以A為圓心作⊙A與Y軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過(guò)B作⊙A的切線(xiàn)l.
(1)以直線(xiàn)l為對(duì)稱(chēng)軸的拋物線(xiàn)過(guò)點(diǎn)A及點(diǎn)C(0,9),求此拋物線(xiàn)的解析式;
(2)拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為D,過(guò)D作⊙A的切線(xiàn)DE,E為切點(diǎn),求此切線(xiàn)長(zhǎng);
(3)點(diǎn)F是切線(xiàn)DE上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFD與△EAD相似時(shí),求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣ x2+ x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.

(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說(shuō)明理由;
(3)在該拋物線(xiàn)對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線(xiàn)交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使△PB1C的周長(zhǎng)最小,并寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】全面兩孩政策實(shí)施后,甲、乙兩個(gè)家庭有了各自的規(guī)劃,假定生男生女的概率相同,回答下列問(wèn)題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是;
(2)乙家庭沒(méi)有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)如果騎自行車(chē)的平均速度為12km/h,請(qǐng)估算,在租用公共自行車(chē)的市民中,騎車(chē)路程不超過(guò)6km的人數(shù)所占的百分比.

查看答案和解析>>

同步練習(xí)冊(cè)答案