【題目】如圖,已知點(diǎn)A、F、EC在同一直線上,AB∥CD∠ABE=∠CDF,AF=CE

1)從圖中任找兩組全等三角形;

2)從(1)中任選一組進(jìn)行證明.

【答案】1△ABE≌△CDF,△AFD≌△CEB(2)

【解析】

試題(1)根據(jù)題目所給條件可分析出△ABE≌△CDF△AFD≌△CEB;(2)根據(jù)已知條件易得∠ACD=∠CABAE=FC,再由∠ABE=∠CDF,根據(jù)AAS可判定△ABE≌△CDF

試題解析:解:(1△ABE≌△CDF,△AFD≌△CEB;

2∵AB∥CD

∴∠ACD=∠CAB,

∵AF=CE,

∴AF+EF=CE+EF,

AE=FC,

△ABE△CDF中,

,

∴△ABE≌△CDFAAS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線lm分別是ABCACBC的垂直平分線,lm分別交邊AB,BC于點(diǎn)D和點(diǎn)E.

(1)AB=10,則CDE的周長(zhǎng).

(2)若∠ACB=120°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,的直徑,上一點(diǎn),和過(guò)點(diǎn)的切線互相垂直,垂足為點(diǎn)

如圖,求證:平分

如圖,直線的延長(zhǎng)線交于點(diǎn),的平分線交于點(diǎn)于點(diǎn),求證:

的條件下,如圖,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的菱形中,,連接對(duì)角線,以為邊作第二個(gè)菱形,使,連接,再以為邊作第三個(gè)菱形,使;…,按此規(guī)律所作的第六個(gè)菱形的邊長(zhǎng)為(

A. 9 B. 9 C. 27 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn),,,分別按,,的方向同時(shí)出

發(fā),以的速度勻速運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,設(shè)四邊形的面積為,運(yùn)動(dòng)時(shí)間為

試證明四邊形是正方形;

寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求運(yùn)動(dòng)幾秒鐘時(shí),面積最小,最小值是多少?

是否存在某一時(shí)刻,使四邊形的面積與正方形的面積比是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一種簡(jiǎn)易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計(jì)),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長(zhǎng)為40cm,燈管DE長(zhǎng)為15cm.

(1)求DE與水平桌面(AB所在直線)所成的角;

(2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).

(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON30°,點(diǎn)A1、A2A3在射線ON上,點(diǎn)B1B2,B3在射線OM上,A1B1A2,A2B2A3A3B3A4均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推,若OA13,則a2=_______a2019=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,F⊙O外一點(diǎn),過(guò)點(diǎn)FFD⊥AB于點(diǎn)D,交弦AC于點(diǎn)E,且FC=FE.

(1)求證:FC⊙O的切線;

(2)若⊙O的半徑為5,cos∠FCE=,求弦AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案