【題目】如圖,將一個鈍角△ABC(其中∠ABC=120°)繞
點(diǎn)B順時針旋轉(zhuǎn)得△A1BC1,使得C點(diǎn)落在AB的延長線上的點(diǎn)C1處,連結(jié)AA1.
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
【答案】(1)60°;(2)證明見解析.
【解析】
(1)∠CBC1即為旋轉(zhuǎn)角,其中∠ABC=120°,所以,∠CBC1=180°-∠ABC;
(2)由題意知,△ABC≌△A1BC1,易證△A1AB是等邊三角形,得到AA1∥BC,繼而得出結(jié)論;
(1)解:∵∠ABC=120°,
∴∠CBC1=180°-∠ABC=180°-120°=60°,
∴旋轉(zhuǎn)角為60°;
(2)證明:由題意可知:△ABC≌△A1BC1,
∴A1B=AB,∠C=∠C1,
由(1)知,∠ABA1=60°,
∴△A1AB是等邊三角形,
∴∠BAA1=60°,
∴∠BAA1=∠CBC1,
∴AA1∥BC(同位角相等,兩直線平行),
∴∠A1AC=∠C(兩直線平行,內(nèi)錯角相等),
∴∠A1AC=∠C1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A在射線CE上,∠C=∠D.
⑴如圖1,若AD∥BC,求證:BD∥AC;
⑵如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄俊?/span>DAE與∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;
⑶如圖3,在⑵的條件下,過點(diǎn)D作DF∥BC交射線于點(diǎn)F,當(dāng)∠DFE=8∠DAE時,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠BAD、∠ADC的平分線AE、DF分別與線段BC相交于點(diǎn)E、F,∠DFC=30°,AE與DF相交干點(diǎn)G,則∠AEC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題,正確的有( )
①經(jīng)過三個點(diǎn)一定可以作圓;②任意一個三角形一定有一個外接圓,并且只有一個外接圓;③在同圓或等圓中,相等的弦則所對的弧相等;④正多邊形既是中心對稱圖形又是軸對稱圖形;⑤三角形的內(nèi)心到三角形各邊的距離相等.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為( )
A.2
B.2+
C.1+
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)的坐標(biāo)分別為(-6,7)、(-3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積.
(2)在平面直角坐標(biāo)系中平移△ABC,使點(diǎn)C經(jīng)過平移后的對應(yīng)點(diǎn)為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點(diǎn)A',B'的坐標(biāo)
(3)P(-3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個單位后,再向上平移6個單位得到點(diǎn)Q(n,-3),則m= n=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,半徑為2的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為( )
A.1
B.1或5
C.3
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程ax-(3a+1)x+2(a+1)=0有兩個不相等的實(shí)數(shù)根x1,x2,且x1-x1x2+x2=1-a,則a=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com