【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).

【答案】
(1)500
(2)解:A的人數(shù):500﹣75﹣140﹣245=40(人);

補全條形圖如圖:


(3)54
(4)解:245÷500×100%=49%,

3600×49%=1764(人)


【解析】解:(1)140÷28%=500(人), 故答案為:500;(3)75÷500×100%=15%,
360°×15%=54°,
故答案為:54;
(1)利用C的人數(shù)÷所占百分比可得被調(diào)查的學生總數(shù);(2)利用總?cè)藬?shù)減去其它各項的人數(shù)=A的人數(shù),再補圖即可;(3)計算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先計算出樣本中喜歡健美操的學生所占百分比,再利用樣本估計總體的方法計算即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】紅星中學課外興趣活動小組對某水稻品種的稻穗谷粒數(shù)目進行調(diào)查,從試驗田中隨機抽取了30株,得到的數(shù)據(jù)如下(單位:顆):

182

195

201

179

208

204

186

192

210

204

175

193

200

203

188

197

212

207

185

206

188

186

198

202

221

199

219

208

187

224


(1)對抽取的30株水稻稻穗谷粒數(shù)進行統(tǒng)計分析,請補全下表中空格,并完善直方圖:

谷粒顆數(shù)

175≤x<185

185≤x<195

195≤x<205

205≤x<215

215≤x<225

頻數(shù)

8

10

3

對應扇形圖中區(qū)域

D

E

C


如圖所示的扇形統(tǒng)計圖中,扇形A對應的圓心角為 度,扇形B對應的圓心角為 度;
(2)該試驗田中大約有3000株水稻,據(jù)此估計,其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是(
A.50π﹣48
B.25π﹣48
C.50π﹣24
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,△ABC是等邊三角形,過AB邊上的點D作DG∥BC,交AC于點G,在GD的延長線上取點E,使DE=CG,連接AE、CD.
(1)求證:△AGE≌△DAC;
(2)過E做EF∥DC.交BC于F.連接AF.判斷△AEF是怎樣的三角形.并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(﹣2,1),B(1,4),若反比例函數(shù)y= 與線段AB有公共點時,k的取值范圍是(
A.﹣2≤k≤4
B.k≤﹣2或k≥4
C.﹣2≤k<0或k≥4
D.﹣2≤k<0或0<k≤4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OAB的圓心角為124°,C是弧 上一點,則∠ACB=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點D作DE∥AC,交BC于E點;過E點作EF⊥DE,交AB的延長線于F點.設AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位射擊運動員在10次射擊訓練中,命中靶的環(huán)數(shù)如圖.
請你根據(jù)圖表,完成下列問題:
(1)

射擊序次

1

2

3

4

5

6

7

8

9

10

成績/環(huán)

8

10

7

9

10

7

10


(2)求該運動員這10次射擊訓練的平均成績.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD,BD交AC于點F.

(1)求證:BD平分∠ABC;
(2)延長AC到點P,使PF=PB,求證:PB是⊙O的切線;
(3)如果AB=10,cos∠ABC=,求AD.

查看答案和解析>>

同步練習冊答案