【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).
【答案】
(1)500
(2)解:A的人數(shù):500﹣75﹣140﹣245=40(人);
補全條形圖如圖:
(3)54
(4)解:245÷500×100%=49%,
3600×49%=1764(人)
【解析】解:(1)140÷28%=500(人), 故答案為:500;(3)75÷500×100%=15%,
360°×15%=54°,
故答案為:54;
(1)利用C的人數(shù)÷所占百分比可得被調(diào)查的學生總數(shù);(2)利用總?cè)藬?shù)減去其它各項的人數(shù)=A的人數(shù),再補圖即可;(3)計算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先計算出樣本中喜歡健美操的學生所占百分比,再利用樣本估計總體的方法計算即可.
科目:初中數(shù)學 來源: 題型:
【題目】紅星中學課外興趣活動小組對某水稻品種的稻穗谷粒數(shù)目進行調(diào)查,從試驗田中隨機抽取了30株,得到的數(shù)據(jù)如下(單位:顆):
182 | 195 | 201 | 179 | 208 | 204 | 186 | 192 | 210 | 204 |
175 | 193 | 200 | 203 | 188 | 197 | 212 | 207 | 185 | 206 |
188 | 186 | 198 | 202 | 221 | 199 | 219 | 208 | 187 | 224 |
(1)對抽取的30株水稻稻穗谷粒數(shù)進行統(tǒng)計分析,請補全下表中空格,并完善直方圖:
谷粒顆數(shù) | 175≤x<185 | 185≤x<195 | 195≤x<205 | 205≤x<215 | 215≤x<225 |
頻數(shù) | 8 | 10 | 3 | ||
對應扇形圖中區(qū)域 | D | E | C |
如圖所示的扇形統(tǒng)計圖中,扇形A對應的圓心角為 度,扇形B對應的圓心角為 度;
(2)該試驗田中大約有3000株水稻,據(jù)此估計,其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是( )
A.50π﹣48
B.25π﹣48
C.50π﹣24
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,△ABC是等邊三角形,過AB邊上的點D作DG∥BC,交AC于點G,在GD的延長線上取點E,使DE=CG,連接AE、CD.
(1)求證:△AGE≌△DAC;
(2)過E做EF∥DC.交BC于F.連接AF.判斷△AEF是怎樣的三角形.并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(﹣2,1),B(1,4),若反比例函數(shù)y= 與線段AB有公共點時,k的取值范圍是( )
A.﹣2≤k≤4
B.k≤﹣2或k≥4
C.﹣2≤k<0或k≥4
D.﹣2≤k<0或0<k≤4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點D作DE∥AC,交BC于E點;過E點作EF⊥DE,交AB的延長線于F點.設AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位射擊運動員在10次射擊訓練中,命中靶的環(huán)數(shù)如圖.
請你根據(jù)圖表,完成下列問題:
(1)
射擊序次 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績/環(huán) | 8 | 10 | 7 | 9 | 10 | 7 | 10 |
(2)求該運動員這10次射擊訓練的平均成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD,BD交AC于點F.
(1)求證:BD平分∠ABC;
(2)延長AC到點P,使PF=PB,求證:PB是⊙O的切線;
(3)如果AB=10,cos∠ABC=,求AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com