【題目】如圖,在平行四邊形中,的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),PAD的中點(diǎn).

(1)求證:四邊形ABFC是平行四邊形;

(2)當(dāng)滿足什么數(shù)量關(guān)系時(shí),四邊形AECP是菱形,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)當(dāng)BC=AF時(shí),四邊形AECP是菱形,理由見(jiàn)解析.

【解析】

(1)利用CF平行且相等于AB可證;

(2)由(1)可得四邊形APCE是平行四邊形,當(dāng)AF=BC時(shí),即AE=EC,一組鄰邊相等,即可判定其為菱形.

證明:連接PE,

(1)PAD的中點(diǎn),EBC的中點(diǎn),

PE=CD=DF,CF=CD=AB.

ABCF,

∴四邊形ABFC是平行四邊形.

(2)當(dāng)BC=AF時(shí),四邊形AECP是菱形,

由題意可得四邊形AECP為平行四邊形,

當(dāng)BC=AF時(shí),即AE=CE.

所以四邊形AECP是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解答問(wèn)題:

1)中國(guó)古代數(shù)學(xué)著作《周髀算經(jīng)》有著這樣的記載:“勾廣三,股修四,經(jīng)隅五.”這句話的意思是:“如果直角三角形兩直角邊為34時(shí),那么斜邊的長(zhǎng)為5.”上述記載說(shuō)明:在中,如果,,,,那么三者之間的數(shù)量關(guān)系是:

2)對(duì)于(1)中這個(gè)數(shù)量關(guān)系,我們給出下面的證明.如圖①,它是由四個(gè)全等的直角三角形圍成的一個(gè)大正方形,中空的部分是一個(gè)小正方形.結(jié)合圖①,將下面的證明過(guò)程補(bǔ)充完整:

,

(用含的式子表示)

又∵

3)如圖②,把矩形折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)處,折痕為.如果,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D、E,過(guò)劣弧DE(不包括端點(diǎn)D,E)上任一點(diǎn)P⊙O的切線MNAB,BC分別交于點(diǎn)M,N,若⊙O的半徑為4cm,則Rt△MBN的周長(zhǎng)為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)Ax1,y1Bx2,y2,當(dāng)y1y2時(shí),試比較x1x2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點(diǎn)D,點(diǎn)E在⊙O上,且DE=DA,AEBC相交于點(diǎn)F.

(1)求證:FD=DC;

(2)AE=8,DE=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(m,n),則向量可以用點(diǎn)P的坐標(biāo)表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則互相垂直.

下面四組向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的組有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購(gòu)買(mǎi)了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過(guò)8780元購(gòu)進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購(gòu)進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購(gòu)進(jìn)羽毛球均可全部售出,請(qǐng)求出網(wǎng)店所獲利潤(rùn)W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)m為何值時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OAOB=4,∠AOB=60°,半A的半徑為1,點(diǎn)C是半圓上任意一點(diǎn),連結(jié)OC,把OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)6

0°到OD的位置,連結(jié)BD

(1)如圖1,求證:ACBD

(2)如圖2,當(dāng)OC與半圓相切于點(diǎn)C時(shí),求CD的長(zhǎng).

(3)直接寫(xiě)出△AOC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案