【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點P,OP交AB于點D,BC、PA的延長線交于點E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長.
【答案】
(1)證明:連接OA,如圖,
∵AC∥OP,
∴∠ACO=∠POB,∠CAO=∠POA,
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠POA=∠POB,
在△PAO和△PBO中,
,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO,
又∵PB⊥BC,
∴∠PBO=90°,
∴∠PAO=90°,
∴OA⊥PE,
∴PA是⊙O的切線
(2)解:∵△PAO≌△PBO,
∴PB=PA=6,
在Rt△PBE中,∵sinE= =
∴ = ,解得PE=10,
∴AE=PE﹣PA=4,
在Rt△AOE中,sinE= = ,
設(shè)OA=3t,則OE=5t,
∴AE= =4t,
∴4t=4,解得t=1,
∴OA=3,
在Rt△PBO中,∵OB=3,PB=6,
∴OP= =3 ,
∵AC∥OP,
∴△EAC∽△EPO,
∴ = ,即 = ,
∴AC= .
【解析】(1)先利用平行線的性質(zhì)得到∠ACO=∠POB,∠CAO=∠POA,加上∠ACO=∠CAO,則∠POA=∠POB,于是可根據(jù)“SAS”判斷△PAO≌△PBO,則∠PAO=∠PBO=90°,然后根據(jù)切線的判定定理即可得到PA是⊙O的切線;(2)先由△PAO≌△PBO得PB=PA=6,在Rt△PBE中,利用正弦的定義可計算PE=10,則AE=PE﹣PA=4,再在Rt△AOE中,由sinE= = ,可設(shè)OA=3t,則OE=5t,由勾股定理得到AE=4t,則4t=4,解得t=1,所以O(shè)A=3;接著在Rt△PBO中利用勾股定理計算出OP=3 ,然后證明△EAC∽△EPO,再利用相似比可計算出AC.
【考點精析】根據(jù)題目的已知條件,利用切線的判定定理的相關(guān)知識可以得到問題的答案,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明(在下面的括號內(nèi)填上相應(yīng)的結(jié)論或推理的依據(jù)):如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3,
求證:AD是∠BAC的平分線.
證明:∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°( )
∴AD∥EG( )
∴∠1=∠E( ) ∠2=∠3( )
∵∠E=∠3(已知)
∴( )=( )
∴AD是∠BAC的平分線( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長. 小萍同學靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,即可求出x的值.參考小萍的思路,探究并解答新問題:如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】杭紹臺高鐵項目是國內(nèi)首批八個社會資本投資鐵路示范項目之一,也是中國首個民營控股高速鐵路項目.該項目可用批復總投資預計448.9億元,資本金占總投資的30%,其中民營聯(lián)合體占股51%,其中448.9億元用科學記數(shù)法表示為_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、C、D都在半徑為6的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長;
(3)求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com