【題目】如圖:二次函數(shù)y=ax2+bx+c的圖像所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:由題意得:a<0,c>0,﹣ =1>0,
∴b>0,即abc<0,選項(xiàng)①錯(cuò)誤;
﹣b=2a,即2a+b=0,選項(xiàng)②正確;
當(dāng)x=1時(shí),y=a+b+c為最大值,
則當(dāng)m≠1時(shí),a+b+c>am2+bm+c,即當(dāng)m≠1時(shí),a+b>am2+bm,選項(xiàng)③正確;
由圖像知,當(dāng)x=﹣1時(shí),ax2+bx+c=a﹣b+c<0,選項(xiàng)④錯(cuò)誤;
∵ax12+bx1=ax22+bx2 ,
∴ax12﹣ax22+bx1﹣bx2=0,(x1﹣x2)[a(x1+x2)+b]=0,
而x1≠x2 ,
∴a(x1+x2)+b=0,
∴x1+x2=﹣ =﹣ =2,所以⑤正確.
所以②③⑤正確,共3項(xiàng),
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a1= ,a2= ,a3= ,…,an+1= (n為正整數(shù),且t≠0,1),則a2016=(用含有t的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象,有下列4個(gè)結(jié)論:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠α的頂點(diǎn)在正n邊形的中心點(diǎn)O處,∠α繞著頂點(diǎn)O旋轉(zhuǎn),角的兩邊與正n邊 形的兩邊分別交于點(diǎn)M、N,∠α與正n邊形重疊部分面積為S.
(1)當(dāng)n=4,邊長(zhǎng)為2,∠α=90°時(shí),如圖(1),請(qǐng)直接寫出S的值;
(2)當(dāng)n=5,∠α=72°時(shí),如圖(2),請(qǐng)問在旋轉(zhuǎn)過程中,S是否發(fā)生變化?并說明理由;
(3)當(dāng)n=6,∠α=120°時(shí),如圖(3),請(qǐng)猜想S是原正六邊形面積的幾分之幾(不必說明理由).若∠α的平分線與BC邊交于點(diǎn)P,判斷四邊形OMPN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B.C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)H.
①探究BD與CF之間的位置關(guān)系,并說明理由;
②當(dāng)AB= ,AD= +1時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我市某公司分兩次采購(gòu)了一批大蒜,第一次花費(fèi)40萬元,第二次花費(fèi)60萬元.已知第一次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次的采購(gòu)數(shù)量是第一次采購(gòu)數(shù)量的兩倍.
(1)試問去年每噸大蒜的平均價(jià)格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購(gòu)的大蒜必需在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半,為獲得最大利潤(rùn),應(yīng)將多少噸大蒜加工成蒜粉?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,E是AD的中點(diǎn),將△CDE沿CE折疊后,點(diǎn)A和點(diǎn)D恰好重合,若菱形ABCD的面積為4 ,則菱形ABCD的周長(zhǎng)是( )
A.8
B.16
C.8
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=﹣2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?
(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com