【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E且AB=6cm,則△DEB的周長為(

A.40cm
B.6cm
C.8cm
D.10cm

【答案】B
【解析】解:∵DE⊥AB,∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,
,
∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
BD+DE+BE=AE+BE=AB=6,
所以,△DEB的周長為6cm.
故選B.
【考點精析】掌握等腰直角三角形和角平分線的性質定理是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在﹣2,1,2,1,4,6中正確的是( )

A平均數(shù)3 B眾數(shù)是﹣2 C中位數(shù)是1 D極差為8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形內角和是1080°,則這個多邊形是(
A.六邊形
B.七邊形
C.八邊形
D.九邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(x﹣2)2+|y+1|=0,則x+y等于( )
A.1
B.﹣1
C.3
D.﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖甲,ABCD,試問21+3的關系是什么,為什么?

(2)如圖乙,ABCD,試問2+41+3+5一樣大嗎?為什么?

(3)如圖丙,ABCD,試問2+4+61+3+5+7哪個大?為什么?

你能將它們推廣到一般情況嗎?請寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與x軸交點A(1,0),B(-3,0) .與y軸交點B(0,3),如圖1所示,D為拋物線的頂點。

(1)求拋物線的解析式;

(2)如圖1若R為y軸上的一個動點,連接AR,則RB+AR的最小值為

(3)在x軸上取一動點P(m,0),,過點P作x軸的垂線,分別交拋物線、CD、CB于點Q、F、E,如圖2所示,求證EF=EP.

(4)設此拋物線的對稱軸為直線MN,在直線MN上取一點T,使∠BTN=∠CTN.直接寫出點T的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2+3x+5的值為9,則代數(shù)式3x2+9x2的值為( 。

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=﹣2x﹣4
(1)根據(jù)關系式畫出函數(shù)的圖象.
(2)求出圖象與x軸、y軸的交點A、B的坐標.
(3)求A、B兩點間的距離.
(4)求出△AOB的面積.
(5)y的值隨x值的增大怎樣變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.

請根據(jù)圖中的信息,回答下列問題:

(1)這次抽樣調查中共調查了  人;

(2)請補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是  ;

(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)

查看答案和解析>>

同步練習冊答案