【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,以CD為直徑的⊙O交BC于點E,連接AE交CD于點P,交⊙O于點F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說明理由;
(2)若PF:PC=1:2,AF=5,求CP的長.
【答案】(1))AB是⊙O切線,理由見解析;(2).
【解析】試題分析:(1)結(jié)論:AB是⊙O切線,連接DE,CF,由∠FCD+∠CDF=90°,只要證明∠ADF=∠DCF即可解決問題.
(2)只要證明△PCF∽△PAC,得,設(shè)PF=a.則PC=2a,列出方程即可解決問題.
試題解析:(1)AB是⊙O切線.
理由:連接DE、CF.
∵CD是直徑,
∴∠DEC=∠DFC=90°,
∵∠ACB=90°,
∴∠DEC+∠ACE=180°,
∴DE∥AC,
∴∠DEA=∠EAC=∠DCF,
∵∠DFC=90°,
∴∠FCD+∠CDF=90°,
∵∠ADF=∠EAC=∠DCF,
∴∠ADF+∠CDF=90°,
∴∠ADC=90°,
∴CD⊥AD,
∴AB是⊙O切線.
(2)∵∠CPF=∠CPA,∠PCF=∠PAC,
∴△PCF∽△PAC,
∴,
∴PC2=PFPA,設(shè)PF=a.則PC=2a,
∴4a2=a(a+5),
∴a=,
∴PC=2a=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月28日是全國中小學(xué)安全教育日,為了讓學(xué)生了解安全知識,增強安全意識,某校舉行了一次“安全知識競賽”.為了了解這次競賽的成績情況,從中抽取了部分學(xué)生的成績?yōu)闃颖,繪制了下列統(tǒng)計圖(說明:A級:90分--100分;B級:75分--89分;C級:60分--74分;D級:60分以下).請結(jié)合圖中提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中C級所在的扇形的圓心角度數(shù)是 ;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校共有2000名學(xué)生,請你用此樣本估計安全知識競賽中A級和B級的學(xué)生共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC中,∠ACB=90°,CD為高,且CD、CE三等分∠ACB.
(1)求∠B的度數(shù).
(2)求證:CE是AB邊上的中線,且.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用尺規(guī)作一個直角三角形,使其兩條直角邊分別等于已知線段時,實際上就是已知的條件是( )
A. 三角形的兩條邊和它們的夾角
B. 三角形的三邊
C. 三角形的兩個角和它們的夾邊
D. 三角形的三個角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面幾種圖形:①三角形;②長方形;③正方體;④圓;⑤圓錐;⑥圓柱.其中屬于立體圖形的是( )
A. ③⑤⑥ B. ①②③ C. ③⑥ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,E在BA的延長線上,AD平分∠CAE.
(1)求證:AD∥BC;
(2)過點C作CG⊥AD于點F,交AE于點G.若AF=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com