精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知,,且,的中點.

1)請你用直尺(無刻度)作出一條與相等的線段,并利用三角形全等證明該線段與相等;

2)求的長.

【答案】(1)詳見解析;(2)5

【解析】

1)延長BECD相交于點F,則EF=BE,證明AEB≌△△DEF,根據全等三角形的性質證明結論;
2)根據全等三角形的性質得到DF=AB=6,根據勾股定理求出BF,根據全等三角形的性質計算.

解:(1)延長BECD相交于點F,則EF=BE,

證明:∵ABCD,
∴∠A=D,∠ABE=DFE,
EAD的中點,
AE=DE,
AEBDEF中,

∴△AEB≌△△DEFAAS),
BE=EF;

2)∵△AEB≌△△DEF,
DF=AB=6,BE=EF=BF,
CF=CD-DF=6,
BCCD,

BF=

BE=BF=5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】20191216日揚州首批為民服務5G站點正式上線,自此有了5G網絡.5G網絡峰值速率為4G網絡峰值速率的10倍,在峰值速率下傳輸500兆數據,5G網絡比4G網絡快45秒,求這兩種網絡的峰值速率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2:

(1)求反比例函數的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數y=在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016湖北省黃岡市)如圖,已知點A1,a)是反比例函數的圖象上一點,直線與反比例函數的圖象在第四象限的交點為點B

1)求直線AB的解析式;

2)動點Px,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.

【答案】1y=x4;(2P4,0).

【解析】試題分析:(1)先把A1,a)代入反比例函數解析式求出a得到A點坐標,再解方程組,得B點坐標,然后利用待定系數法求AB的解析式;

2)直線ABx軸于點Q,如圖,利用x軸上點的坐標特征得到Q點坐標,則PA﹣PB≤AB(當P、A、B共線時取等號),于是可判斷當P點運動到Q點時,線段PA與線段PB之差達到最大,從而得到P點坐標.

試題解析:(1)把A1a)代入a=﹣3,則A1,﹣3),解方程組: ,得: ,則B3,﹣1),設直線AB的解析式為y=kx+b,把A1,﹣3),B3﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;

2)直線ABx軸于點Q,如圖,當y=0時,x﹣4=0,解得x=4,則Q4,0),因為PA﹣PB≤AB(當P、A、B共線時取等號),所以當P點運動到Q點時,線段PA與線段PB之差達到最大,此時P點坐標為(4,0).

考點:反比例函數與一次函數的交點問題.

型】解答
束】
22

【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽花6/盆,繡球花10/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.

(1)若小張家花臺綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購買,問兩種花卉各買了多少盆?

(2)分別寫出兩種花卉的付款金額y(元)關于購買量x(盆)的函數解析式;

(3)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數量不超過繡球花數量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,BD2AD,E、F、G分別是OCOD、AB的中點,下列結論:BEAC;四邊形BEFG是平行四邊形;EFG≌△GBEEGEF,其中正確的個數是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的對角線、相交于點,

1)求證:

2)若,連接、,判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機從有400人的某小區(qū)抽取40名人員的答卷成績,并對他們的成績(單位:分)統(tǒng)計如下:

85

80

95

100

90

95

85

65

75

85

90

90

70

90

100

80

80

90

95

75

80

60

80

95

85

100

90

85

85

80

95

75

80

90

70

80

95

75

100

90

根據數據繪制了如下的表格和統(tǒng)計圖:

等級

成績(

頻率

頻率

10

0.25

12

0.3

合計

40

1

根據上面提供的信息,回答下列問題:

1)統(tǒng)計表中的 ,

2)請補全條形統(tǒng)計圖;

3)根據抽樣調查結果,請估計該小區(qū)答題成績?yōu)?/span>的有多少人?

4)該社區(qū)有2名男管理員和2名女管理員,現從中隨機挑選2名管理員參加社區(qū)防控宣傳活動,請用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將函數y=x22+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A1,m),B4,n)平移后的對應點分別為點A'B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是( 。

A. B.

C. D.

查看答案和解析>>

同步練習冊答案