【題目】問題提出:用水平線和豎直線將平面分成若干個(gè)面積為1的小長方形格子,小長方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形叫格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,它各邊上格點(diǎn)的個(gè)數(shù)和為x,多邊形內(nèi)部的格點(diǎn)數(shù)為n,S與x,n之間是否存在一定的數(shù)量關(guān)系呢?
(1)問題探究:
如圖1,圖中所示的格點(diǎn)多邊形,其內(nèi)部都只有一個(gè)格點(diǎn),它們的面積與各邊上格點(diǎn)的個(gè)數(shù)和的對應(yīng)關(guān)系如下表,請?zhí)顚懴卤聿懗鯯與x之間的關(guān)系式S=

多邊形的序號

多邊形的面積S

2

2.5

3

4

各邊上格點(diǎn)的個(gè)數(shù)和x

4


(2)在圖2中所示的格點(diǎn)多邊形,這些多邊形內(nèi)部都有且只有2個(gè)格點(diǎn).探究此時(shí)所畫的各個(gè)多邊形的面積S與它各邊上格點(diǎn)的個(gè)數(shù)和x之間的關(guān)系式S=
(3)請繼續(xù)探索,當(dāng)格點(diǎn)多邊形內(nèi)部有且只有n(n是正整數(shù))個(gè)格點(diǎn)時(shí),猜想S與x,n之間的關(guān)系式S=(用含有字母x,n的代數(shù)式表示)
(4)問題拓展:
請?jiān)谡切尉W(wǎng)格中的類似問題進(jìn)行探究:在圖3、4中正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,圖是該正三角形格點(diǎn)中的兩個(gè)多邊形.
根據(jù)圖中提供的信息填表:

格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)

格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)

格點(diǎn)多邊形的面積

多邊形1(圖3)

8

1

8

多邊形2(圖4)

7

3

11

一般格點(diǎn)多邊形

a

b

S

則S與a,b之間的關(guān)系為S=(用含a,b的代數(shù)式表示).

【答案】
(1)
x;5;6;8
(2)
x+1
(3)
x+(n﹣1)
(4)a+2b﹣2
【解析】解:問題探究:
(1.)∵①各邊上格點(diǎn)個(gè)數(shù)和為:4,S=2= ×4,
②各邊上格點(diǎn)個(gè)數(shù)和為:5,S=2.5= ×5,
③各邊上格點(diǎn)個(gè)數(shù)和為:6,S=3= ×6,
④各邊上格點(diǎn)個(gè)數(shù)和為:8,S=4= ×8,
∴S= x;
所以答案是: x;5,6,8;
(2.)由圖可知多邊形內(nèi)部都有而且只有2格點(diǎn)時(shí),
⑦的各邊上格點(diǎn)的個(gè)數(shù)為6,面積為4= ×6+1,
⑥的各邊上格點(diǎn)的個(gè)數(shù)為10,面積為6= ×10+1,
∴S= x+1;
所以答案是: x+1;
(3.)由圖1可知多邊形內(nèi)部都有而且只有n格點(diǎn)時(shí),面積為:S= x+(n﹣1).
(4.)問題拓展:
格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)為8,格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)1,則s=8+2×1﹣2=8
格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)為7,格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)3,則s=7+2×3﹣2=11
格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)為a,格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)b,則S=a+2b﹣2
所以答案是a+2b﹣2.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)與式的規(guī)律(先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點(diǎn),交y軸于F點(diǎn),交線段BC于E點(diǎn).求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點(diǎn)P、與直線BC相交于點(diǎn)M,連接PB.問在直線BC下方的拋物線上是否存在點(diǎn)Q,使得△QMB與△PMB的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠C=90°,A=34°,D,E 分別為 AB,AC 上一點(diǎn),將△BCD,ADE 沿 CD,DE 翻折,點(diǎn) A,B 恰好重合于點(diǎn) P ,則∠ACP=_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著全國各地空氣出現(xiàn)嚴(yán)重污染,PM2.5屢屢爆表,我國多個(gè)城市發(fā)生霧霾天氣,越來越多的人開始關(guān)注一個(gè)原本陌生的術(shù)語﹣PM2.5.某校九年級共有1000名學(xué)生,團(tuán)委準(zhǔn)備調(diào)查他們對“PM2.5”知識的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案: 方案一:調(diào)查九年級部分女生;
方案二:調(diào)查九年級部分男生;
方案三:到九年級每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個(gè)方案是;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息,將其補(bǔ)充完整;
(3)請你估計(jì)該校九年級約有多少名學(xué)生比較了解“PM2.5”的知識.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P,Q分別是∠AOB的邊OA,OB上的點(diǎn).

(1)過點(diǎn)POB的垂線,垂足為H;

(2)過點(diǎn)QOA的垂線,交OA于點(diǎn)C,連接PQ;

(3)線段QC的長度是點(diǎn)Q 的距離, 的長度是點(diǎn)P到直線OB的距離,因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點(diǎn)E,且ACBD,作BFCD,垂足為點(diǎn)F,BFAC交于點(diǎn)C,BGE=ADE.

(1)如圖1,求證:AD=CD;

(2)如圖2,BHABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于ADE面積的2倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE;

2)若∠B=3=22,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單的多面體模型,解答下列問題:

(1)根據(jù)上面的多面體模型,完成表格:

多面體

頂點(diǎn)數(shù)(V)

面數(shù)(F)

棱數(shù)(E)

四面體

4

4

正方體

8

12

正八面體

6

8

12

正十二面體

20

12

30

可以發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是_______________;

(2)若一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)大8,且有30條棱,則這個(gè)多面體的面數(shù)是______;

(3)某個(gè)玻璃飾品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處有3條棱.設(shè)該多面體外表面三角形的個(gè)數(shù)為x,八邊形的個(gè)數(shù)為y,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識.

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1;

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案