精英家教網(wǎng)已知:如圖,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,點E為AC的中點.求證:DE=
12
BC
分析:根據(jù)已知及相似三角形的判定可得到△AED∽△ACB,再根據(jù)相似三角形的邊對應(yīng)成比例即可得到結(jié)論.
解答:證明:證法一:∵AB∥CD,∴∠DCA=∠BAC.(1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵點E是AC的中點,∴DE⊥AC,(2分)
∵AC⊥BC,
∴∠AED=∠ACB=90°.(1分)
∴△AED∽△ACB.
DE
BC
=
AE
AC
=
1
2

∴DE=
1
2
BC.(2+2+1分)精英家教網(wǎng)
證法二:
延長DE交AB于點F,(1分)
∵AB∥CD,∴∠DCA=∠BAC,(1分)
∵∠DAC=∠BAC,∴∠DAC=∠DCA,
∴DA=DC.(1+2分)
∵點E是AC的中點,∴DE⊥AC,(2分)
∵AC⊥BC,∴∠CED=∠ACB=90°,
∴EF∥BC.(1分)
∴點F是AB的中點.
∴EF=
1
2
BC.(1+1分)
DE
EF
=
CE
AE
,
∴DE=EF=
1
2
BC.(1+1分)
點評:此題主要考查了三角形相似的判定和性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,對角線CA平分∠BCD,且梯形的周長為20,求AC的長及梯形面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)已知:如圖,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足為點F,且F是DE的中點,聯(lián)結(jié)AE,交邊BC于點G.
(1)求證:四邊形ABGD是平行四邊形;
(2)如果AD=
2
AB
,求證:四邊形DGEC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的長;
        (2)梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案