【題目】如圖, ABC的中線AD、BE相交于點F,下列結(jié)論正確的有

①SABD=SDCA;② SAEF=SBDF;③S四邊形EFDC=2SAEF;④SABC=3SABF

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】ADABC的中線,

SABD=SDCA=,故①正確;

BE分別是是ABC的中線,

SABE=SBCE=,

SABD=SDCA= SABE=SBCE,

SABE=SABD,

SABE- SABF =SABD- SABF,

∴SAEF=SBDF,故②正確;

∵△ABC的中線ADBE相交于點F,

SABF =2SAEF.

SDCA=SABE,

SDCA- SAEF =SABE- SAEF,

SABF =S四邊形EFDC,

S四邊形EFDC=2SAEF,故③正確;

∵△ABC的中線AD、BE相交于點F,

SABE=.

SABC=2 SABE,

SABE=3 SABF,故④正確;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC,沿BAC的平分線AB1折疊剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿BnAnC的平分線AnBn+1折疊,Bn與點C重合.無論折疊多少次只要最后一次恰好重合,我們就稱BACABC的好角

小麗展示了確定BACABC的好角的兩種情形.情形一如圖2沿等腰三角形ABC頂角BAC的平分線AB1折疊,B與點C重合;情形二如圖3,沿ABCBAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,此時點B1與點C重合

1小麗經(jīng)過三次折疊發(fā)現(xiàn)了BACABC的好角,請?zhí)骄?/span>BC不妨設(shè)BC之間的等量關(guān)系

2根據(jù)以上內(nèi)容猜想若經(jīng)過n次折疊BACABC的好角BC不妨設(shè)BC之間的等量關(guān)系為 ;

3如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角則此三角形另兩個角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識呢?下面請你解決以下問題:

(1)觀察如圖(1)“箭頭圖”,試探究BDC與∠A、∠B、∠C之間大小的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,回答下列兩個問題:

如圖(2),把一塊三角板XYZ放置在ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點B、C.若A=50°,則∠ABX+∠ACX=   ;

如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】何老師安排喜歡探究問題的小明解決某個問題前,先讓小明看了一個有解答過程的例題.

例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0∴m=﹣3,n=3

為什么要對2n2進行了拆項呢?

聰明的小明理解了例題解決問題的方法,很快解決了下面兩個問題.相信你也能很好的解決下面的這兩個問題,請寫出你的解題過程..

解決問題:

(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;

(2)已知a、b、c是△ABC的三邊長,滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長,且c為整數(shù),那么c可能是哪幾個數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若a是(-4)2的平方根,b的一個平方根是2,求式子ab的立方根;

(2)實數(shù)ab互為相反數(shù),cd互為倒數(shù),x的絕對值為,求式子x2+(abcd)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電力公司在電線桿上的C處引兩條等長的拉線CE、CF固定電線桿CD,拉線CE和地面成60°角,在離電線桿9米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB1.5

(1)CD的長(結(jié)果保留根號);

(2)EF的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點DE分別在邊BC,AB上,且BD=AE,ADCE交于點F

1)求證:AD=CE;

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個鋼筋三角架三邊長分別是20厘米、50厘米、60厘米,現(xiàn)在再做一個與其相似的鋼筋三角架,而只有長為30厘米和50厘米的兩根鋼筋,要求以其中一根為一邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有多少種?寫出你的設(shè)計方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P(1,4),Q(m,n)在函數(shù)y= (x>0)的圖象上,當(dāng)m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C,D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積(  )

A. 減小 B. 增大 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

同步練習(xí)冊答案