【題目】如圖,在△ABC中,點D在邊BC上,∠CAD=∠B,點E在邊AB上,聯(lián)結(jié)CE交AD于點H,點F在CE上,且滿足CFCE=CDBC.
(1)求證:△ACF∽△ECA;
(2)當(dāng)CE平分∠ACB時,求證:=.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)相似三角形的判定定理得到△ACD∽△BCA,求得=,得到AC2=CDBC,等量代換得到AC2=CFCE,于是得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)得到∠CAE=∠CDE,根據(jù)角平分線定義得到∠ACE=∠DCH,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)∵∠ACD=∠BCA,∠CAD=∠B,
∴△ACD∽△BCA,
∴=,
∴AC2=CDBC,
∵CFCE=CDBC,
∴AC2=CFCE,
∴=,
∵∠ACF=∠ECA,
∴△ACF∽△ECA;
(2)∵△ACF∽△ECA,
∴∠CAE=∠CDE,
∵當(dāng)CE平分∠ACB,
∴∠ACE=∠DCH,
∴△ACE∽△DCH,
∴=2=
∵AC2=CDBC,
∴=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.
如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?
在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2, 其中結(jié)論正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點.學(xué)完了三角函數(shù)知識后,劉明和王華同學(xué)決定用自己學(xué)到的知識測量“大王米”的高度,他們制訂了測量方案,并利用課余時間完成了實地測量.測量項目及結(jié)果如下表:
項目 | 內(nèi)容 | |||
課題 | 測量鄭州會展賓館的高度 | |||
測量示意圖 | 如圖,在E點用測傾器DE測得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點用測傾器CF測得樓頂B的仰角是β,且點A、B、C、D、E、F均在同一豎直平面內(nèi) | |||
測量數(shù)據(jù) | ∠α的度數(shù) | ∠β的度數(shù) | EC的長度 | 測傾器DE,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … |
請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D,E分別在邊AC,AB上,BD平分∠ABC,DE⊥AB,AE=6,cos A=.求:
(1)DE,CD的長;(2)tan∠DBC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com