【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關系并證明;
(2)求FG的長.
【答案】(1)證明見解析;
(2)FG的長為.
【解析】試題分析:(1)連接OD,證∠ODF=90°即可.
(2)利用△ADF是30°的直角三角形可求得AF長,同理可利用△FHC中的60°的三角函數(shù)值可求得FG長.
試題解析:(1)連接OD,
∵以等邊三角形ABC的邊AB為直徑的半圓與BC邊交于點D,
∴∠B=∠C=∠ODB=60°,
∴OD∥AC,
∵DF⊥AC,
∴∠CFD=∠ODF=90°,即OD⊥DF,
∵OD是以邊AB為直徑的半圓的半徑,
∴DF是圓O的切線;
(2)∵OB=OD=AB=6,且∠B=60°,
∴BD=OB=OD=6,
∴CD=BC﹣BD=AB﹣BD=12﹣6=6,
∵在Rt△CFD中,∠C=60°,
∴∠CDF=30°,
∴CF=CD=×6=3,
∴AF=AC﹣CF=12﹣3=9,
∵FG⊥AB,
∴∠FGA=90°,
∵∠FAG=60°,
∴FG=AFsin60°=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=65°,∠C=35°,AD是△ABC的角平分線.
(1)求∠ADC的度數(shù).
(2)過點B作BE⊥AD于點E,BE延長線交AC于點F.求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB是直角,∠ABC=60°,AD、CE、BF分別是∠BAC、∠BCA、∠ABC的平分線,AD、CE、BF相交于點F.
①請求出∠AFC的度數(shù)并說明理由;
②請你判斷FE與FD之間的數(shù)量關系并說明理由。
(2)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,請判斷線段AE、CD、AC之間的數(shù)量關系并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境
數(shù)學活動課上,老師讓同學們以“三角形平移與旋轉”為主題開展數(shù)學活動,和是兩個等邊三角形紙片,其中,.
解決問題
(1)勤奮小組將和按圖1所示的方式擺放(點在同一條直線上) ,連接.發(fā)現(xiàn),請你給予證明;
(2)如圖2,創(chuàng)新小組在勤奮小組的基礎上繼續(xù)探究,將繞著點逆時針方向旋轉,當點恰好落在邊上時,求的面積;
拓展延伸
(3)如圖3,縝密小組在創(chuàng)新小組的基礎上,提出一個問題: “將沿方向平移得到連接,當恰好是以為斜邊的直角三角形時,求的值.請你直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參照學習函數(shù)的過程與方法,探究函數(shù)的圖象與性質.
因為,即,所以我們對比函數(shù)來探究.
列表:
… | 1 | 2 | 3 | 4 | … | |||||||
… | 1 | 2 | 4 | 1 | … | |||||||
… | 2 | 3 | 5 | 0 | … |
描點:在平面直角坐標系中,以自變量的取值為橫坐標,以相應的函數(shù)值為縱坐標,描出了相應的點(如圖所示).
p>(1)請你把軸左邊各點和右邊各點,分別用一條光滑曲線順次連接起來;(2)觀察圖象并分析表格,回答下列問題:
①當時,隨的增大而 ;(填“增大”或“減小”)
②的圖象是由的圖象向 平移 個單位而得到;
③圖象關于點 成中心對稱.(填點的坐標)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=2x+2與直線 l2:y2=mx+8相交于點 P(2,b).
(1)求 b,m 的值;
(2)直接寫出當 y1<y2 時,自變量 x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=( )
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
一個含有多個字母的式子中,如果任意交換兩個字母的位置,式子的值都不變,這樣的式子就叫做對稱式,例如:,,,…含有兩個字母,的對稱式的基本對稱式是和,像,等對稱式都可以用,表示,例如:.
請根據(jù)以上材料解決下列問題:
(1)式子:①,②,③,④中,屬于對稱式的是 (填序號)
(2)已知.
①若,求對稱式的值
②若,求對稱式的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com