【題目】解方程:
(1)2x+3=x+5;
(2)2(3y-1)-3(2-4y)=9y+10;
(3)
(4).
【答案】(1)x=2(2)y=2(3)x=3(4)y=-1
【解析】
(1)移項、合并同類項即可得解;
(2)去括號、移項、合并同類項、系數(shù)化為1即可得解;
(3)去括號、去分母、移項、合并同類項、系數(shù)化為1即可得解;
(4)去分母、去括號、移項、合并同類項、系數(shù)化為1即可得解;
(1)移項,得2x-x=5-3,
合并同類項,得x=2;
(2)去括號,得6y-2-6+12y=9y+10,
移項,得6y+12y-9y=10+2+6,
合并同類項,得9y=18,
系數(shù)化為1,得y=2;
(3)去括號,得x+x+2=8+x,
去分母,得x+5x+4=16+2x,
移項,得x+5x-2x=16-4,
合并同類項,得4x=12,
系數(shù)化為1,得x=3;
(4)去分母,得3(3y-1)-12=2(5y-7),
去括號,得9y-3-12=10y-14,
移項,得9y-10y=3+12-14,
合并同類項,得-y=1,
系數(shù)化為1,得y=-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、②、③、④四個圖形都是平面圖形,觀察圖②和表中對應(yīng)數(shù)值,探究計數(shù)的方法并解答下面的問題.
(1)數(shù)一數(shù)每個圖各有多少頂點(diǎn)、多少條邊、這些邊圍成多少區(qū)域,將結(jié)果填入下表:
圖形 | ① | ② | ③ | ④ |
頂點(diǎn)數(shù)(V) | ||||
邊數(shù)(E) | ||||
區(qū)域數(shù)(F) |
(2)根據(jù)表中的數(shù)值,寫出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的關(guān)系;
(3)如果一個平面圖形有20個頂點(diǎn)和11個區(qū)域,求這個平面圖形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列三個判斷中:
①當(dāng)x>0時,y>0;
②若a=﹣1,則b=4;
③拋物線上有兩點(diǎn)P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,則y1>y2;正確的是( 。
A.①
B.②
C.③
D.①②③都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子長25米,斜靠在一面墻上,梯子底端離墻7米。
(1)這個梯子的頂端離地面有多高?
(2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是直線AB上的一點(diǎn),∠COE=90°,OF是∠AOE的平分線.
(1)當(dāng)點(diǎn)C,E,F(xiàn)在直線AB的同側(cè)時(如圖①所示),試說明∠BOE=2∠COF.
(2)當(dāng)點(diǎn)C與點(diǎn)E,F(xiàn)在直線AB的兩側(cè)時(如圖②所示),(1)中的結(jié)論是否仍然成立?請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么∠DAC的度數(shù)為( 。
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( 。
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.
(1)求m的值;
(2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好使AP=2PB,點(diǎn)Q為PB的中點(diǎn),求線段AQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com