【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點AAD平分∠BAC交⊙O于點D,過點DBC的平行線分別交AC、AB的延長線于點E、FDGAB于點G,連接BD

(1)求證:△AED∽△DGB;

(2)求證:EF是⊙O的切線;

(3),OA4,求劣弧的長度(結(jié)果保留π)

【答案】1)見解析;(2)見解析;(3

【解析】

1)先證∠ACB=∠ADB=90°,再由平行得,由垂直得,再根據(jù)角度轉(zhuǎn)換得,即可證明△AED∽△DGB;

2)連接,證明,即可證明,從而解決本題;

3)先證,得到,再根據(jù)OA=4,然后求出,從而求出弧長.

1∵AB為直徑,

∴∠ACB=∠ADB=90°

,

,

∵DG⊥AB,

,

,

AD平分∠BAC,

∴∠EAD=∠DAG

2)連接,

,

,

,

,

EF是⊙O的切線;

3)∵,

,

,

,

,

OA=4

AB=8,

,

,

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當?shù)囟林形?/span>12時太陽光線與水平面的夾角為30°

1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長?

2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應是多少米?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線a≠0)與x軸交于點A(﹣1,0)和點B(4,0).

(1)求拋物線的函數(shù)解析式;

(2)如圖,將拋物線沿x軸翻折得到拋物線,拋物線y軸交于點C,點D是線段BC上的一個動點,過點DDEy軸交拋物線于點E,求線段DE的長度的最大值;

(3)在(2)的條件下,當線段DE處于長度最大值位置時,作線段BC的垂直平分線交DE于點F,垂足為H,點P是拋物線上一動點,P與直線BC相切,且SPSDFH=2π,求滿足條件的所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了接受省藝術特色學校的驗收,對義務教育的七、八、九三個年級學生舉行了書法大賽,賽后對三個年級的獲獎情況進行了統(tǒng)計,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖.

請解答下列問題:

1)請補全兩幅統(tǒng)計圖;

2)獲得一等獎的同學有來自七年級,有來自八年級,其余同學均來自九年級.現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)書法大賽,請你通過列表或畫樹狀圖,求所選兩人中既有八年級同學又有九年級同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有6個小三角形和1個正六邊形;第②個圖案中有10個小三角形和2個正六邊形;第③個圖案中有14個小三角形和3個正六邊形;;按此規(guī)律排列下去,已知一個小三角形的面積為a,一個正六邊形的面積為b,則第⑧個圖案中所有的小三角形和正六邊形的面積之和為____________(結(jié)果用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點.點軸上,且,反比例函數(shù)圖象上有一點,且,則點坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(1),下列結(jié)論:其中正確的個數(shù)是( 。

①a0;

②b0;

③c0;

⑤a+b+c0

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+12分別與y軸,x軸交于A,B兩點,點My軸上,以點M為圓心的⊙M與直線AB相切于點D,連接MD.

(1)求證:△ADM∽△AOB.

(2)如果⊙M的半徑為2,請寫出點M的坐標,并寫出以點為頂點,且過點M的拋物線的函數(shù)表達式.

(3)(2)的條件下,試問在此拋物線上是否存在點P,使以PA,M三點為頂點的三角形與△AOB相似?如果存在,請求出所有符合條件的點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC10cm,BDAC于點D,BD8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQAC,直線PQAB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0t5).線段CM的長度記作y,線段BP的長度記作y,yy關于時間t的函數(shù)變化情況如圖所示.

1)由圖2可知,點M的運動速度是每秒  cm;當t  秒時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是  (并寫出此點的坐標);

2)設四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關系式;

3)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案