【題目】如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為( )
A. 8 B. 10 C. 12 D. 16
【答案】B
【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=10.
故選C.
“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】2016年7月11日是第二十二個世界人口日,本次世界人口日的主題是“面對74億人的世界”,74億人用科學記數(shù)法表示為人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中有2個紅球、3個綠球和5個白球,這些球除顏色外都相同,將球攪勻,從中任意摸出1個球.
(1)會出現(xiàn)哪些可能的結(jié)果? ;
(2)你認為摸到哪種顏色球的可能性最大? ;
(3)怎樣改變袋子中紅球和白球的個數(shù),使摸到這兩種顏色球的概率相同?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置。如圖所示,
現(xiàn)將△ABC平移后得△EDF,使點B的對應(yīng)點為點D,點A對應(yīng)點為點E.
(1)畫出△EDF;
(2)線段BD與AE有何關(guān)系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市九年級學生學業(yè)考試體育成績,現(xiàn)隨機抽取部分學生的體育(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)成績進行分段統(tǒng)計如下:
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計表中,a的值為 ,b的值為 ;
(2)將統(tǒng)計圖補充完整;
(3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10560名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=﹣x+2分別交x、y軸于點A、B,點C為線段OA的中點,動點P從坐標原點出發(fā),以2個單位長度/秒的速度向終點A運動,動點Q從點C出發(fā),以個單位長度/秒的速度向終點B運動.過點Q作QM∥AB交x軸于點M,動點P、Q同時出發(fā),其中一個點到達終點,另一個點也停止運動,設(shè)點P運動的時間為t秒,PM的長為y個單位長度.
(1)∠BCO= °;
(2)求y關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)是否存在時間t,使得以PC為直徑的⊙D與直線QM相切?若存在,求t的值;不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com