精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點,與y軸交于點C,其頂點為P,連接PA、AC、CP,過點Cy軸的垂線l

求點P,C的坐標;

直線l上是否存在點Q,使的面積等于的面積的2倍?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】(1)C(0,5),P(3,4);(2)Q

【解析】

利用配方法求出頂點坐標,令,可得,推出;

直線PC的解析式為,設直線交x軸于D,則,設直線PQx軸于E,當時,的面積等于的面積的2倍,分兩種情形分別求解即可解決問題.

頂點,

得到

,,解得5,

,

設直線PC的解析式為,則有

解得,

直線PC的解析式為,設直線交x軸于D,則,

設直線PQx軸于E,當時,的面積等于的面積的2倍,

,

,

,

則直線PE的解析式為,

,

直線的解析式為

,

綜上所述,滿足條件的點,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】本題滿分8分東營市為進一步加強和改進學校體育工作,切實提高學生體質健康水平,決定推進一校一球隊、一級一專項、一人一技能活動計劃.某校決定對學生感興趣的球類項目A:足球, B:籃球, C:排球,D:羽毛球,E:乒乓球進行問卷調查,學生可根據自己的喜好選修一門,李老師對某班全班同學的選課情況進行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖如圖

(1)求出該班學生人數;

2將統(tǒng)計圖補充完整;

3若該校共有學生3500名,請估計有多少人選修足球?

4該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是O的直徑,點C為O上一點,AE和過點C的切線互相垂直,垂足為E,AE交O于點D,直線EC交AB的延長線于點P,連接AC,BC,PB:PC=1:2.

(1)求證:AC平分BAD;

(2)探究線段PB,AB之間的數量關系,并說明理由;

(3)若AD=3,求ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形對角線,請在大長方形中完成下列畫圖,要求:僅用無刻度直尺;保留必要的畫圖痕跡.

在圖中畫一個角,使點A或點B是這個角的頂點,且AB為這個角的一邊;

在圖中畫出線段AB的垂直平分線,并簡要說明畫圖的方法不要求證明______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結論中:

;;方程有兩個不相等的實數根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OAOD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點C,連接CD,延長AO交⊙O于點E,交CD的延長線于點B

(1)求證:直線CD是⊙O的切線;

(2)如果D點是BC的中點,⊙O的半徑為 3cm,求的長度.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知RtABC中,∠ACB90°,CACB4,另有一塊等腰直角三角板的直角頂點放在C處,CPCQ2,將三角板CPQ繞點C旋轉(保持點P在△ABC內部),連接APBP、BQ

1)如圖1求證:APBQ

2)如圖2當三角板CPQ繞點C旋轉到點A、P、Q在同一直線時,求AP的長;

3)設射線AP與射線BQ相交于點E,連接EC,寫出旋轉過程中EP、EQEC之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形的頂點在反比例函數)的圖象上,點軸上,對角線軸,若兩點的橫坐標分別為1,2的長為,則的值為____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根

(1)求線段BC的長度;

(2)試問:直線AC與直線AB是否垂直?請說明理由;

(3)若點D在直線AC上,且DB=DC,求點D的坐標;

(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案