【題目】根據(jù)市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對外開放.在換水時需要經(jīng)“排水一清冼一灌水”的過程.某游泳館從早上開始對游泳池進行換水,已知該游泳池的排水速度是灌水速度的倍,其中游泳池內(nèi)剩余的水量與換水時間上之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

1)該游泳池清洗需要    小時.

2)求排水過程中的之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

3)若該游泳館在換水結(jié)束分鐘后才能對外開放,判斷游泳愛好者小致能否在中午進入該游泳館游泳,并說明理由.

【答案】11.2;(2y=-800x+1200(0x1.5);(3)不能,理由見解析.

【解析】

12.7-1.5即可求解;

2)設(shè)排水過程中之間的函數(shù)關(guān)系式為,根據(jù)函數(shù)圖象經(jīng)過點,待定系數(shù)法即可求解;

3)根據(jù)題意計算出對外開放時間,與12:30比較即可求解.

解:(12.7-1.5=1.2h,

2)設(shè)排水過程中之間的函數(shù)關(guān)系式為

由題意得函數(shù)圖象經(jīng)過點,

解得

之間的函數(shù)關(guān)系式為

3)由題意得排水速度為1200÷1.5=800m3/h,

∴灌水速度為800÷1.6=500 m3/h,

∴灌水時間為1200÷500=2.4h,

所以對外開放時間為7+2.7+2.4+0.5=12.612.5

∴小致不能在中午進入該游泳館游泳.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點DDEAB,垂足為E

1)求證:DE是⊙O的切線;

2)若DE= ,∠C=30°,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是半圓的直徑,.射線為半圓的切線.在上取一點,連接交半圓于點,連接.過點作的垂線,垂足為點,與相交于點.過點作半圓的切線,切點為,與相交于點

1)求證:;

2)當(dāng)的面積相等時,求的長;

3)求證:當(dāng)上移動時(點除外),點始終是線段的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,ABC是等邊三角形,點DE分別在邊BC,AC上,若∠ADE60°,則AB,CEBD,DC之間的數(shù)量關(guān)系是   

2)拓展探究

如圖2,ABC是等腰三角形,ABAC,∠Bα,點D,E分別在邊BC,AC上.若∠ADEα,則(1)中的結(jié)論是否仍然成立?請說明理由.

3)解決問題

如圖3,在ABC中,∠B30°,ABAC4cm,點P從點A出發(fā),以1cm/s的速度沿A→B方向勾速運動,同時點M從點B出發(fā),以cm/s的速度沿B→C方向勻速運動,當(dāng)其中一個點運動至終點時,另一個點隨之停止運動,連接PM,在PM右側(cè)作∠PMG30°,該角的另一邊交射線CA于點G,連接PC.設(shè)運動時間為ts),當(dāng)△APG為等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了加大退耕還林的力度,出臺了一系列的激勵措施:在退耕還林過程中,每一年的林地面積達到10畝且每年的林地面積在增加的農(nóng)戶,當(dāng)年都可得生活補貼費2000元,且每超過10畝的部分還給予獎勵每畝a元,在林間還有套種其他農(nóng)作物,平均每畝還有b元的收入.

下表是某農(nóng)戶在頭兩年通過退耕還林每年獲得的總收入情況:

(注:年總收入=生活補貼量+政府獎勵量+種農(nóng)作物收入)

1)試根據(jù)以上提供的資料確定a、b的值.

2)從2003年起,如果該農(nóng)戶每年新增林地的畝數(shù)比前一年按相同的增長率增長,那么2005年該農(nóng)戶獲得的總收入達到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,以點P(2,a)為圓心的⊙Py軸相切,直線y=x與⊙P相交于點A、B,且AB的長為2,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC三個頂點坐標(biāo)分別為A(-2,4),B(-2,1),C(-52)

1)請畫出ABC關(guān)于x軸對稱的A1B1C1;

2)將A1B1C1的三個頂點的橫坐標(biāo)與縱坐標(biāo)同時乘-2,得到對應(yīng)的點A2,B2,C2,請畫出A2B2C2;

3A1B1C1A2B2C2面積之比為 (不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點A,C分別是直線y=x+4與坐標(biāo)軸的交點,點B的坐標(biāo)為(﹣2,0),點D是邊AC上的一點,DEBC于點E,點F在邊AB上,且D,F兩點關(guān)于y軸上的某點成中心對稱,連結(jié)DF,EF.設(shè)點D的橫坐標(biāo)為mEF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗證﹣應(yīng)用的方法進行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進行觀察,測量,得到lm變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是圓上一點,點D是半圓的中點,連接CDOB于點E,點FAB延長線上一點,CFEF

1)求證:FC是⊙O的切線;

2)若CF5,求⊙O半徑的長.

查看答案和解析>>

同步練習(xí)冊答案