【題目】如圖,數(shù)軸上的點A、B、C、D、E表示連續(xù)的五個整數(shù),對應(yīng)的數(shù)分別為a、b、c、d、e

(1)若ae=0,直接寫出代數(shù)式bcd的值為_____;

(2)若ab=7,先化簡,再求值:;

(3)若abcde=5,數(shù)軸上的點M表示的實數(shù)為m,且滿足MA+ME>12,則m的范圍是____。

【答案】(1)0;(2);(3)m<-5或m>7

【解析】試題分析:設(shè) 根據(jù)列出方程,求出的值,即可求出的值.

根據(jù)列出方程,求出的值,即求出的值,對所求式子進行化簡,代入運算即可.

列出方程,求出的值,分兩種情況進行討論.

試題解析:設(shè)

解得:

故答案為:

則:

解得:

即:

,

,

,

當(dāng)時,原式=.

解得:

當(dāng)點M在點A的左側(cè)時,

即: 解得:

當(dāng)點M在點E的右側(cè)時,

即: 解得:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)過反比例函數(shù)y的圖像和性質(zhì),請你回顧研究它的過程,運用所學(xué)知識對函數(shù)y的圖像和性質(zhì)進行探索,并解決下列問題:

1)該函數(shù)的圖像大致是(

2)寫出該函數(shù)兩條不同類型的性質(zhì):

;

.

3)寫出不等式30的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( 。

A. 1 B. C. 2 D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC=AC=5,AB=8,CDAB邊的高,點Ax軸上,點By軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒1個單位長的速度運動,則點B隨之沿y軸下滑,并帶動ABC在平面內(nèi)滑動,設(shè)運動時間為t秒,當(dāng)B到達原點時停止運動

(1)連接OC,線段OC的長隨t的變化而變化,當(dāng)OC最大時,t____

(2)當(dāng)ABC的邊與坐標(biāo)軸平行時,t____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩班英語口語水平,每班隨機抽取了10名學(xué)生進行了口語測驗,測驗成績滿分為10分,參加測驗的10名學(xué)生成績(單位:分)稱為樣本數(shù)據(jù),抽樣調(diào)查過程如下:

收集數(shù)據(jù)

甲、乙兩班的樣本數(shù)據(jù)分別為:

甲班:6 7 9 4 6 7 6 9 6 10

乙班:7 8 9 7 5 7 8 5 9 5

整理和描述數(shù)據(jù)

規(guī)定了四個層次:9分以上(含9分)為優(yōu)秀”,8-9分(含8分)為良好”,6-8分(含6分)為一般”,6分以下(不含6分)為不合格。按以上層次分布繪制出如下的扇形統(tǒng)計圖。

請計算:(1)圖1中,不合格層次所占的百分比;

(2)圖2中,優(yōu)秀層次對應(yīng)的圓心角的度數(shù)。

分析數(shù)據(jù)

對于甲、乙兩班的樣本數(shù)據(jù),請直接回答:

(1)甲班的平均數(shù)是7,中位數(shù)是_____;乙班的平均數(shù)是_____,中位數(shù)是7;

(2)從平均數(shù)和中位數(shù)看,____班整體成績更好。

解決問題

若甲班50人,乙班40人,通過計算,估計甲、乙兩班不合格層次的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AE平分∠BAD交邊BC于E,DF平分∠ADC交邊BC于F,若AD=11,EF=5,則AB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關(guān)系,如圖所示.

1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式;

2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CE平分∠ACBABE點,DEBCDFAB

1)若∠BCE25°,請求出∠ADE的度數(shù);

2)已知:BF2BEDFCEP點,連結(jié)BPABBP

猜想:△CDF的邊DFCD的數(shù)量關(guān)系,并說明理由;

DE的中點N,連結(jié)NP.求證:∠ENP3DPN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中.已知點Px,y)在直線ymx+2m+2上.且線段PO≥2,則m的取值為_____

查看答案和解析>>

同步練習(xí)冊答案