【題目】已知二次函數(shù).
(1)用配方法求出函數(shù)的頂點(diǎn)坐標(biāo);
(2)求出該二次函數(shù)圖象與軸的交點(diǎn)坐標(biāo)。
(3)該圖象向右平移 個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn).請(qǐng)直接寫(xiě)出平移后所得圖象與軸的另一個(gè)交點(diǎn)的坐標(biāo)為 .
【答案】(1)(-1,8);(2)和;(3)3;(4,0)
【解析】
(1)利用配方法將一般式轉(zhuǎn)化為頂點(diǎn)式,然后求頂點(diǎn)坐標(biāo)即可;
(2)將y=0代入,求出x的值,即可求出該二次函數(shù)圖象與軸的交點(diǎn)坐標(biāo);
(3)根據(jù)坐標(biāo)與圖形的平移規(guī)律即可得出結(jié)論.
解:(1)
∴二次函數(shù)的頂點(diǎn)坐標(biāo)為(-1,8);
(2)將y=0代入,得
解得:
∴該二次函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為和;
(3)∵向右平移3個(gè)單位后與原點(diǎn)重合
∴該圖象向右平移3個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),
此時(shí)也向右平移了3個(gè)單位,平移后的坐標(biāo)為(4,0)
即平移后所得圖象與軸的另一個(gè)交點(diǎn)的坐標(biāo)為(4,0)
故答案為:3;(4,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB為⊙O的一條弦,以AB為直角邊作等腰直角△ABC,直線AC恰好是⊙O的切線,點(diǎn)D為⊙O上的一點(diǎn),連接DA,DB,DC,若DA=3,DB=4,則DC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長(zhǎng)線上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李師傅駕駛出租車(chē)勻速地從西安市送客到咸陽(yáng)國(guó)際機(jī)場(chǎng),全程約,設(shè)小汽車(chē)的行駛時(shí)間為 (單位:),行駛速度為(單位:),且全程速度限定為不超過(guò).
(1)求關(guān)于的函數(shù)表達(dá)式;
(2)李師傅上午點(diǎn)駕駛小汽車(chē)從西安市出發(fā).需在分鐘后將乘客送達(dá)咸陽(yáng)國(guó)際機(jī)場(chǎng),求小汽車(chē)行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知:如圖,拋物線與坐標(biāo)軸分別交于點(diǎn), 點(diǎn)是線段上方拋物線上的一個(gè)動(dòng)點(diǎn),
(1)求拋物線解析式:
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷(xiāo)售單價(jià)每降低1元,其日銷(xiāo)量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過(guò)A商品獲利潤(rùn)y元.
(1)求y與x之間的函數(shù)解析式(不必寫(xiě)出自變量x的取值范圍)
(2)A商品銷(xiāo)售單價(jià)為多少時(shí),該商場(chǎng)每天通過(guò)A商品所獲的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過(guò)AB的中點(diǎn)D.若⊙O的半徑為,AB=4,則BC的長(zhǎng)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在OA邊上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)E坐標(biāo)及經(jīng)過(guò)O,D,C三點(diǎn)的拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(2)中的拋物線的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使得以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA是⊙O的切線,切點(diǎn)為A,AC是⊙O的直徑,連接OP交⊙O于E.過(guò)A點(diǎn)作AB⊥PO于點(diǎn)D,交⊙O于B,連接BC,PB.
(1)求證:PB是⊙O的切線;
(2)求證:E為△PAB的內(nèi)心;
(3)若cos∠PAB=,BC=1,求PO的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com