【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=12,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與ABC相似,則AE=__________.

【答案】9或16

【解析】試題分析:根據(jù)相似三角形的判斷,要使得△ADE△ABC相似,已經(jīng)滿足∠BAC∠DAE,因此只要兩邊對(duì)應(yīng)成比例即可,由于本題中三角形相似,對(duì)應(yīng)點(diǎn)沒(méi)有確定,因此分兩種情況,畫(huà)出圖形,然后根據(jù)相似三角形對(duì)應(yīng)邊成比例,就出AE的長(zhǎng).

第一種情況:當(dāng)△ABC∽△ADE時(shí),如圖;

∵△ABC∽△ADE

,

∵AB24,AC18AD12,

,

∴AE9.

第二種情況:當(dāng)△ABC∽△AED,如圖;

∵△ABC∽△AED,

∵AB24AC18,AD12,

,

∴AE16.

故填916.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.

1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后,指針指向1的概率為   ;

2)小明和小華利用這個(gè)轉(zhuǎn)盤(pán)做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買(mǎi)1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買(mǎi)2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)環(huán)保意識(shí),某社區(qū)計(jì)劃開(kāi)展一次“減碳環(huán)保,減少用車(chē)時(shí)間”的宣傳活動(dòng),對(duì)部分家庭五月份的平均每天用車(chē)時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)本次抽樣調(diào)查了多少個(gè)家庭?

(2)將圖中的條形圖補(bǔ)充完整,直接寫(xiě)出用車(chē)時(shí)間的中位數(shù)落在哪個(gè)時(shí)間段內(nèi);

(3)求用車(chē)時(shí)間在1~1.5小時(shí)的部分對(duì)應(yīng)的扇形圓心角的度數(shù);

(4)若該社區(qū)有車(chē)家庭有1600個(gè),請(qǐng)你估計(jì)該社區(qū)用車(chē)時(shí)間不超過(guò)1.5小時(shí)的約有多少個(gè)家庭?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y= kx+b的圖象與反比例函數(shù)的圖象相交于A,B兩點(diǎn), 其中A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是2,如圖:

(1)求這個(gè)一次函數(shù)的解析式;

(2)在y軸是否存在一點(diǎn)P使△OAP為等腰三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC是等邊三角形,四邊形ACFE是平行四邊形,AEBC

(1)如圖①,求證:ACFE是菱形;

(2)如圖②,點(diǎn)D是△ABC內(nèi)一點(diǎn),且∠ADB90°,∠EDC90°,∠ABD=∠ACE.求證:ACFE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC BDE 都是等邊三角形,AB、D 三點(diǎn)共線.下列結(jié)論:①ABCD;②BFBG;③HB 平分∠AHD;④∠AHC60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點(diǎn)F

1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);

2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).

①AE=EF是否一定成立?說(shuō)出你的理由;

在如圖2所示的直角坐標(biāo)系中拋物線y=ax2+x+c經(jīng)過(guò)A、D兩點(diǎn),當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在此拋物線上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°CEAD,且CEBC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC_____°

查看答案和解析>>

同步練習(xí)冊(cè)答案