【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京市和張家口市舉行.為了調(diào)查學(xué)生對冬奧知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取20名學(xué)生進(jìn)行了相關(guān)知識(shí)測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲校20名學(xué)生成績的頻數(shù)分布表和頻數(shù)分布直方圖如圖:
甲校學(xué)生樣本成績頻數(shù)分布表(表1)
成績m(分) | 頻數(shù)(人數(shù)) | 頻率 |
50≤m<60 | a | 0.05 |
60≤m<70 | b | c |
70≤m<80 | 3 | 0.15 |
80≤m<90 | 8 | 0.40 |
90≤m<100 | 6 | 0.30 |
合計(jì) | 20 | 1.0 |
b.甲校成績在80≤m<90的這一組的具體成績是:
87 88 88 88 89 89 89 89
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如表所示(表2):
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
根據(jù)以如圖表提供的信息,解答下列問題:
(1)表1中a= ;表2中的中位數(shù)n= ;
(2)補(bǔ)全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖;
(3)在此次測試中,某學(xué)生的成績是87分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是 校的學(xué)生(填“甲”或“乙”),理由是 ;
(4)假設(shè)甲校200名學(xué)生都參加此次測試,若成績80分及以上為優(yōu)秀,估計(jì)成績優(yōu)秀的學(xué)生人數(shù)為 .
【答案】(1)1;88.5;(2)圖見解析;(3)乙,乙的中位數(shù)是85,87>85;(4)140人
【解析】
(1)根據(jù)頻數(shù)分布表和頻數(shù)分布直方圖的信息列式計(jì)算即可得到a的值,根據(jù)中位數(shù)的定義求解可得n的值;
(2)根據(jù)題意補(bǔ)全頻數(shù)分布直方圖即可;
(3)根據(jù)甲這名學(xué)生的成績?yōu)?/span>87分,小于甲校樣本數(shù)據(jù)的中位數(shù)88.5分,大于乙校樣本數(shù)據(jù)的中位數(shù)85分可得;
(4)利用樣本估計(jì)總體思想求解可得.
解:(1)a=20×0.05=1,
由頻數(shù)分布表和頻數(shù)分布直方圖中的信息可知,排在中間的兩個(gè)數(shù)是88和89,
∴n==88.5;
故答案為:1,88.5;
(2)∵b=20﹣1﹣3﹣8﹣6=2;
∴補(bǔ)全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖如圖所示;
(3)在此次測試中,某學(xué)生的成績是87分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是乙校的學(xué)生,
理由:乙的中位數(shù)是85,87>85;
故答案為:乙,乙的中位數(shù)是85,87>85;
(4)200×=140,
答:成績優(yōu)秀的學(xué)生人數(shù)為140人.
故答案為:140人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一個(gè)問題:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?其大意如下:今有5只雀、6只燕,分別放一起用衡器稱,聚在一起的雀重,燕輕.將1只雀、1只燕交換位置放,兩邊重量相等.5只雀、6只燕重量為1斤(注:聲代1斤=16兩).問每只雀、燕各重多少兩?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,與過點(diǎn)C的⊙O的切線交于點(diǎn)D.
(1)若AC=4,BC=2,求OE的長.
(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx-4(a,b是常數(shù).且a0)的圖象過點(diǎn)(3,-1).
(1)試判斷點(diǎn)(2,2-2a)是否也在該函數(shù)的圖象上,并說明理由.
(2)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求該函數(shù)表達(dá)式.
(3)已知二次函數(shù)的圖像過(,)和(,)兩點(diǎn),且當(dāng)<時(shí),始終都有>,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)()成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī),飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí)接通電源,水溫(℃)與時(shí)間()的關(guān)系如圖所示:
(1)分別寫出水溫上升和下降階段與之間的函數(shù)關(guān)系式;
(2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA、OB分別交⊙O于點(diǎn)D、E、弧CD=弧CE
(1)求證:∠A=∠B.
(2)已知AC=2,OA=4,求陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲,準(zhǔn)備了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤甲、乙,每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形區(qū)域,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字,游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)后,指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,5或6時(shí),則小吳勝;否則小黃勝.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域?yàn)橹梗?/span>
(1)這個(gè)游戲規(guī)則對雙方公平嗎?說說你的理由;
(2)請你設(shè)計(jì)一個(gè)對雙方都公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)為內(nèi)的一個(gè)動(dòng)點(diǎn),過點(diǎn)作與,使得,分別交、于點(diǎn)、.
(1)求證:;
(2)連接,若,試求的值;
(3)記,,,若,,且、、為整數(shù),求、、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為(0,-1),該拋物線與交于另一點(diǎn),連接.
(1)求該拋物線的解析式,并用配方法把解析式化為的形式;
(2)若點(diǎn)在上,連接,求的面積;
(3)一動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿平行于軸方向向上運(yùn)動(dòng),連接,,設(shè)運(yùn)動(dòng)時(shí)間為秒(>0),在點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com