【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為(  )

A. 2+ B. C. 2+2- D. 4+22-

【答案】C

【解析】

試題解析:由題意可得,如圖所示,

存在兩種情況,當(dāng)ABCA1BC時(shí),連接OB、OC,∵點(diǎn)O是等腰ABC的外心,且∠BOC=60°,底邊BC=2,OB=OC,OBC為等邊三角形,OB=OC=BC=2,OA1BC于點(diǎn)D,CD=1,OD==,=BCA1D==;

當(dāng)ABCA2BC時(shí),連接OBOC,∵點(diǎn)O是等腰ABC的外心,且∠BOC=60°,底邊BC=2,OB=OCOBC為等邊三角形,OB=OC=BC=2,OA1BC于點(diǎn)D,CD=1,OD==,SA2BC=BCA2D ==,由上可得,ABC的面積為,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別是(﹣1,0)和(2,0),以OC為直徑作圓⊙P,AB切⊙P于點(diǎn)B,交y軸于點(diǎn)E.點(diǎn)M是劣弧上一動(dòng)點(diǎn),CMBP于點(diǎn)N,BMx軸于點(diǎn)D.

(1)求點(diǎn)E的坐標(biāo);

(2)當(dāng)點(diǎn)M在弧BO上運(yùn)動(dòng)時(shí),PD﹣PN的值是否變化?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)長(zhǎng)為8分米,寬為5分米,高為7分米的長(zhǎng)方體上截去一個(gè)長(zhǎng)為6分米,寬為5分米,深為2分米的長(zhǎng)方體后,得到一個(gè)如圖所示的幾何體一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,對(duì)角線,交于點(diǎn),上任意一點(diǎn),連接并延長(zhǎng),交于點(diǎn),連接

1)求證:四邊形是平行四邊形;

2)若,.求出的邊上的高的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,,點(diǎn),軸上方,且四邊形的面積為32,

1)若四邊形是菱形,求點(diǎn)的坐標(biāo).

2)若四邊形是平行四邊形,如圖1,點(diǎn),分別為的中點(diǎn),且,求的值.

3)若四邊形是矩形,如圖2,點(diǎn)為對(duì)角線上的動(dòng)點(diǎn),為邊上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:

①2a+b=0;

當(dāng)﹣1≤x≤3時(shí),y<0;

若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2

④9a+3b+c=0

其中正確的是(  )

A. ①②④ B. ①②③ C. ①④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:

①abc0,

②a﹣b+c0

③2a=b,

④4a+2b+c0,

若點(diǎn)(﹣2,)和(,)在該圖象上,則

其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過(guò)點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某船自西向東航行,在處測(cè)得某島在北偏東的方向上,前進(jìn)海里后到達(dá),此時(shí),測(cè)得海島在北偏東的方向上,要使船與海島最近,則船應(yīng)繼續(xù)向東前進(jìn)________海里.

查看答案和解析>>

同步練習(xí)冊(cè)答案