【題目】如圖,一傘狀圖形,已知,點(diǎn)是角平分線上一點(diǎn),且,,與交于點(diǎn),與交于點(diǎn).
(1)如圖一,當(dāng)與重合時(shí),探索,的數(shù)量關(guān)系
(2)如圖二,將在(1)的情形下繞點(diǎn)逆時(shí)針旋轉(zhuǎn)度,繼續(xù)探索,的數(shù)量關(guān)系,并求四邊形的面積.
【答案】(1),證明詳見解析;(2),
【解析】
(1)根據(jù)角平分線定義得到∠POF=60°,推出△PEF是等邊三角形,得到PE=PF;
(2)過點(diǎn)P作PQ⊥OA,PH⊥OB,根據(jù)角平分線的性質(zhì)得到PQ=PH,∠PQO=∠PHO=90°,根據(jù)全等三角形的性質(zhì)得到PE=PF,S四邊形OEPF=S四邊形OQPH,求得OQ=1,QP=,根據(jù)三角形的面積公式即可得到結(jié)論.
解:(1)∵,平分,
∴,
∵,
∴ ,
∴是等邊三角形,
∴;
(2)過點(diǎn)作,,
∵平分,
∴,,
∵,
∴∠QPH=60°,
∴,
∴,
在與中
,
∴,
∴,
,
∵,,平分,
∴,
∴,=,
∴=,
∴四邊形的面積==
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,分別為,邊上的高,連接,過點(diǎn)作與點(diǎn),為中點(diǎn),連接,.
(1)如圖,若點(diǎn)與點(diǎn)重合,求證:;
(2)如圖,請(qǐng)寫出與之間的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=90°,AB=BC=4,點(diǎn)M是線段BC的中點(diǎn),點(diǎn)N在射線MB上,連接AN,平移△ABN,使點(diǎn)N移動(dòng)到點(diǎn)M,得到△DEM(點(diǎn)D與點(diǎn)A對(duì)應(yīng),點(diǎn)E與點(diǎn)B對(duì)應(yīng)),DM交AC于點(diǎn)P.
(1)若點(diǎn)N是線段MB的中點(diǎn),如圖1.
① 依題意補(bǔ)全圖1;
② 求DP的長(zhǎng);
(2)若點(diǎn)N在線段MB的延長(zhǎng)線上,射線DM與射線AB交于點(diǎn)Q,若MQ=DP,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售某品牌的羽毛球拍和乒乓球拍,羽毛球拍每副定價(jià)元,乒乓球拍每副定價(jià)元.店慶期間該超市開展促銷活動(dòng),活動(dòng)期間向顧客提供兩種優(yōu)惠方案.
方案一:買一副羽毛球拍送一副乒乓球拍;
方案二:羽毛球拍和乒乓球拍都按定價(jià)的付款.
現(xiàn)某校要到該超市購(gòu)買羽毛球拍副,乒乓球拍副()
(1)若該校按方案一購(gòu)買,需付款____元;(用含的代數(shù)式表示),若該校按方案二購(gòu)買,需付款_____元.(用含的代數(shù)式表示)
(2)當(dāng)取何值時(shí),兩種方案一樣優(yōu)惠?
(3)當(dāng)時(shí),通過計(jì)算說明此時(shí)按哪種方案購(gòu)買較為合算?你能給出一種更為省錢的購(gòu)買方法嗎?請(qǐng)寫出你的購(gòu)買方法,并計(jì)算需付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象如圖所示,則結(jié)論:①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為(2,2);②當(dāng)x>2時(shí),;③當(dāng)x=1時(shí),BC=3;④當(dāng)x逐漸增大時(shí),隨著的增大而增大,隨著的增大而減。畡t其中正確結(jié)論的序號(hào)是( )
A.①②B.①③C.②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,直線l經(jīng)過頂點(diǎn)C,過A,B兩點(diǎn)分別作l的垂線AE,BF,垂足分別為E.F.
(1)如圖所示,當(dāng)直線l不與底邊AB相交時(shí),求證:.
(2)當(dāng)直線l繞點(diǎn)C旋轉(zhuǎn)到圖(b)的位置時(shí),猜想EF、AE、BF之間的關(guān)系,并證明.
(3)當(dāng)直線l繞點(diǎn)C旋轉(zhuǎn)到圖(c)的位置時(shí),猜想EF、AE、BF之間的關(guān)系,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com