【題目】已知拋物線(xiàn)y=x2+bx+c(b、c是常數(shù))與x軸有兩個(gè)交點(diǎn),其中有一點(diǎn)的坐標(biāo)為A(1,0),點(diǎn)P(m,t)(m≠0)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).
(1)設(shè)y′=m+t,寫(xiě)出y′關(guān)于m的函數(shù)解析式,并求出該函數(shù)圖象的對(duì)稱(chēng)軸(用含c的代數(shù)式表示);
(2)在(1)的條件下,當(dāng)m≤3時(shí),與其對(duì)應(yīng)的函數(shù)y′的最小值為﹣,求拋物線(xiàn)y=x2+bx+c的解析式;
(3)在(2)的條件下,P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為P′,且P′落在第一象限內(nèi),當(dāng)P′A2取得最小值時(shí),求m與t的值.
【答案】(1)y′=m2﹣cm+c m=c(2)y=x2+2x﹣3(3)t=﹣m=
【解析】【試題分析】(1)根據(jù)點(diǎn)P(m,t)(m≠0)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)得:
t=m2+bm+c,則y′=m+t=m+m2+bm+c=m2+(b+1)m+c,
將A(1,0)代入y=x2+bx+c,得1+b+c=0,b+1=﹣c,
y′=m2﹣cm+c.根據(jù)二次函數(shù)的對(duì)稱(chēng)軸表達(dá)式為:該函數(shù)圖象的對(duì)稱(chēng)軸為m=c;
(2)由(1)知,y′=m2﹣cm+c,對(duì)稱(chēng)軸為m=c;
當(dāng)c≤3時(shí),即:c≤6,此時(shí),m=c時(shí),拋物線(xiàn)y′=m2﹣cm+c取最小值,
即: c2﹣c×c+c=﹣,
解得:c=﹣3或c=7(舍去),
當(dāng)c=﹣3時(shí),b=﹣c﹣1=2.
即y=x2+2x﹣3;
(3)當(dāng)y=x2+2x﹣3時(shí),
∵P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為P',有P'(﹣m,﹣t).
由P'(﹣m,﹣t)在第一象限,
∴﹣m>0,﹣t>0.即m<0,t<0.
由拋物線(xiàn)y=x2+2x﹣3的頂點(diǎn)為(﹣1,﹣4)
∴﹣4≤t<0.
由A點(diǎn)坐標(biāo)為(1,0),
利用兩點(diǎn)間的距離公式得:P'A2=(﹣m﹣1)2+t2=(m+1)2+t2,
∵t=m2+2m﹣3=(m+1)2﹣4,
變形:(m+1)2=t+4,
∴P'A2=t2+t+4=(t+)2+
∴當(dāng)t=﹣時(shí),P'A2取得最小值.
把t=﹣代入t=m2+2m﹣3,得﹣=m2+2m﹣3
解得m=或m=(舍)
故:當(dāng)t=﹣時(shí),m=.
【試題解析】
(1)∵t=m2+bm+c.
∴y′=m+t=m+m2+bm+c=m2+(b+1)m+c,
將A(1,0)代入y=x2+bx+c,得1+b+c=0,b+1=﹣c,
∴y′=m2﹣cm+c.
∴該函數(shù)圖象的對(duì)稱(chēng)軸為m=c;
(2)由(1)知,y′=m2﹣cm+c,對(duì)稱(chēng)軸為m=c;
當(dāng)c>3時(shí),即:c>6,此時(shí),m=3時(shí),拋物線(xiàn)y′=m2﹣cm+c取最小值,
∵點(diǎn)P(m,t),
∴點(diǎn)P的橫坐標(biāo)是3,
即:點(diǎn)P是定點(diǎn),不是動(dòng)點(diǎn),不符合題意,
當(dāng)c≤3時(shí),即:c≤6,此時(shí),m=c時(shí),拋物線(xiàn)y′=m2﹣cm+c取最小值,
即: c2﹣c×c+c=﹣,
∴c=﹣3或c=7(舍去),
當(dāng)c=﹣3時(shí),b=﹣c﹣1=2.
∴y=x2+2x﹣3;
(3)當(dāng)y=x2+2x﹣3時(shí),
∵P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為P',有P'(﹣m,﹣t).
由P'(﹣m,﹣t)在第一象限,
∴﹣m>0,﹣t>0.即m<0,t<0.
由拋物線(xiàn)y=x2+2x﹣3的頂點(diǎn)為(﹣1,﹣4)
∴﹣4≤t<0.
由A點(diǎn)坐標(biāo)為(1,0),
∴P'A2=(﹣m﹣1)2+t2=(m+1)2+t2,
∵t=m2+2m﹣3=(m+1)2﹣4,
∴(m+1)2=t+4,
∴P'A2=t2+t+4=(t+)2+
∴當(dāng)t=﹣時(shí),P'A2取得最小值.
把t=﹣代入t=m2+2m﹣3,得﹣=m2+2m﹣3
解得m=或m=(舍)
∴當(dāng)t=﹣時(shí),m=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糕點(diǎn)廠(chǎng)中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅.制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉.現(xiàn)共有面粉4500kg,問(wèn)制作兩種月餅應(yīng)各用多少面粉,才能生產(chǎn)最多的盒裝月餅?(用一元一次方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是-5的相反數(shù),c=-|-2|,且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標(biāo)出點(diǎn)A、B、C.
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A、B、C三點(diǎn)的距離之和等于12,請(qǐng)求出所有點(diǎn)M對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小明從家步行去書(shū)店看書(shū).出發(fā)小時(shí)后距家1.8千米時(shí),爸爸駕車(chē)從家沿相同路線(xiàn)追趕小明,在地追上小明后,二人駕車(chē)?yán)^續(xù)前行到達(dá)書(shū)店.小明在書(shū)店看書(shū),爸爸去單位地辦事.如圖是小明與爸爸兩人之間距離(千米)與小明出發(fā)的時(shí)間(小時(shí))之間的函數(shù)圖象,(小明步行速度與爸爸駕車(chē)速度始終保持不變,彼此交流時(shí)間忽略不計(jì)),請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)小明步行速度是_____千米/小時(shí),爸爸駕車(chē)速度是______千米/小時(shí):
(2)圖中點(diǎn)的坐標(biāo)是______:
(3)求書(shū)店與家的路程;
(4)求爸爸出發(fā)多長(zhǎng)時(shí)間,兩人相距3千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,按如下步驟作圖:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)。虎谝渣c(diǎn)C為圓心,CB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置關(guān)系是
(2)如圖2,當(dāng)AB=BC時(shí),猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.
(3)在(2)的條件下,若AC=8cm,BD=6cm,則點(diǎn)B到AD的距離是 cm,若將四邊形ABCD通過(guò)割補(bǔ),拼成一個(gè)正方形,那么這個(gè)正方形的邊長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某種學(xué)生快餐(共 400g)營(yíng)養(yǎng)成分扇形統(tǒng)計(jì)圖,已知期中表示脂肪的扇形的圓心角為 36°,維生素和礦物質(zhì)含量占脂肪的一 半,蛋白質(zhì)含量比碳水化合物多 40g.有關(guān)這份快餐,下列說(shuō)法正 確的是( )
A.表示維生素和礦物質(zhì)的扇形的圓心角為 20°.B.脂肪有 44g,含量超過(guò) 10%.
C.表示碳水化合物的扇形的圓心角為 135°.D.蛋白質(zhì)的含量為維生素和礦物質(zhì)的 9 倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】25 日某路段雷達(dá)測(cè)速區(qū)監(jiān)測(cè)到一組汽車(chē)時(shí)速數(shù)據(jù),經(jīng)整理得到如下頻數(shù)表和頻數(shù)直方圖(每組含后一邊界值,不含前一邊界值).
(1)請(qǐng)你把表中的數(shù)據(jù)填寫(xiě)完整.
(2)補(bǔ)全頻數(shù)直方圖.
(3)若該路段限速 70(汽車(chē)時(shí)速高于 70 千米/小時(shí)即為違章),抽測(cè)到違章車(chē)輛有多少輛?統(tǒng)計(jì)表明 25 日全天通過(guò)這個(gè)路段的汽車(chē)大約有 15000 輛,請(qǐng)估計(jì)這天超速違章的車(chē)輛有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)O點(diǎn)作射線(xiàn)OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線(xiàn)OB上,此時(shí)三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿(mǎn)足什么等量關(guān)系,并說(shuō)明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過(guò)程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線(xiàn)恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD,點(diǎn)E在邊AB上,M、N分別在射線(xiàn)BC和射線(xiàn)AD上,連接EM,EN,將三角形MBE沿EM折疊(把物體的一部分翻轉(zhuǎn)和另一部分貼攏),點(diǎn)B落在點(diǎn)B’處;將三角形NAE沿EN折疊,點(diǎn)A落在點(diǎn)A’處.
(1)若,,用直尺、量角器畫(huà)出射線(xiàn)EB’與EA’;
(2)若,,求的度數(shù);
(3)若,,用含的代數(shù)式表示的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com