【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點(diǎn)坐標(biāo);
(2)如圖2,若C為x正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰直角△ACD,∠ACD=90°,連接OD,求∠AOD的度數(shù);
(3)如圖3,過(guò)點(diǎn)A作y軸的垂線交y軸于E,F為x軸負(fù)半軸上一點(diǎn),G在EF的延長(zhǎng)線上,以EG為直角邊作等腰Rt△EGH,過(guò)A作x軸垂線交EH于點(diǎn)M,連FM,等式AM=FM+OF是否成立?若成立,請(qǐng)說(shuō)明;若不成立,說(shuō)明理由.
【答案】(1)B(8,0);(2)90°;(3)AM=FM+OF成立,理由見(jiàn)解析.
【解析】試題分析:(1)作AE⊥OB于E,因?yàn)?/span>△AOB為等腰直角三角形,A(4,4),則B點(diǎn)坐標(biāo)可求;
(2)作AE⊥OB于E,DF⊥OB于F,求證△DFC≌△CEA,再根據(jù)等量變換,即可求出∠AOD的度數(shù)可求;
(3)在AM上截取AN=OF,連EN,易證△EAN≌△EOF,再根據(jù)角與角之間的關(guān)系,證明△NEM≌△FEM,則有AM-MF=OF,即可求證等式成立.
試題解析:(1)如圖所示,作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB為等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
(2)如圖所示,作AE⊥OB于E,DF⊥OB于F,
∵△ACD為等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA(AAS),
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB為等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
(3)AM=FM+OF成立,理由:
如圖所示,在AM上截取AN=OF,連EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS),
∴∠OEF=∠AEN,EF=EN,
又∵△EGH為等腰直角三角形,
∴∠GEH=45°,即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM﹣MF=AM﹣MN=AN,
∴AM﹣MF=OF,
即AM=FM+OF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某件商品的成本價(jià)為15元,據(jù)市場(chǎng)調(diào)查得知,每天的銷(xiāo)量y(件)與價(jià)格x(元)有下列關(guān)系:
銷(xiāo)售價(jià)格x | 20 | 25 | 30 | 50 |
銷(xiāo)售量y | 15 | 12 | 10 | 6 |
(1)根據(jù)表中數(shù)據(jù),在直角坐標(biāo)系中描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn),并畫(huà)出圖象;
(2)猜測(cè)確定y與x間的關(guān)系式;
(3)設(shè)總利潤(rùn)為W元,試求出W與x之間的函數(shù)關(guān)系式,若售價(jià)不超過(guò)30元,求出當(dāng)日的銷(xiāo)售單價(jià)定為多少時(shí),才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,
(1)請(qǐng)判斷線段AE和BD的數(shù)量關(guān)系和位置關(guān)系,并證明;
(2)若已知∠AED=135°,設(shè)∠AEC=α,當(dāng)△BDE為等腰三角形時(shí),求α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓的周長(zhǎng)公式C=2πR中,下列說(shuō)法正確的是( )
A.π、R是自變量,2是常量 B.C是因變量,R是自變量,2π為常量
C.R為自變量,2π、C為常量 D.C是自變量,R為因變量,2π為常量
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),其中1是第一個(gè)三角形數(shù),3是第2個(gè)三角形數(shù),6是第3個(gè)三角形數(shù),…依此類(lèi)推,那么第9個(gè)三角形數(shù)是 , 2016是第 個(gè)三角形數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四句話中的文字有三句具有對(duì)稱規(guī)律,其中沒(méi)有這種規(guī)律的一句是( )
A.上海自來(lái)水來(lái)自海上
B.保衛(wèi)diao1yu1dao
C.清水池里池水清
D.蜜蜂釀蜂蜜
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,在中,點(diǎn)、分別是、邊的中點(diǎn), 、是對(duì)角線上的兩點(diǎn),且,則下列結(jié)論不正確的是( )
A. B.
C. ∥ D. 四邊形是平行四邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com