【題目】如圖,射線OM上有三點A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動點PO點出發(fā)沿OM方向以每秒1cm的速度勻速運(yùn)動;動點Q從點C出發(fā),在線段CO上向點O勻速運(yùn)動(點Q運(yùn)動到點O時,立即停止運(yùn)動),點P,Q同時出發(fā).

(1)當(dāng)點P與點Q都同時運(yùn)動到線段AB的中點時,求點Q的運(yùn)動速度;

(2)若點Q運(yùn)動速度為每秒3cm時,經(jīng)過多少時間P,Q兩點相距70cm;

(3)當(dāng)PA=2PB時,點Q運(yùn)動的位置恰好是線段AB的三等分,求點Q的速度.

【答案】(1)x=0.8cm/s;

(2)經(jīng)過5秒和70秒的P、Q兩點相距70cm;

(3)點Q的運(yùn)動速度為0.5cm/scm/s.

【解析】

試題(1)設(shè)點的運(yùn)動速度為 根據(jù)題意列出方程,求出即可;
(2)原本之間距離大于70cm,所以要分兩種情況,第一相距70cm跟相遇后兩者相距70cm,根據(jù)路程=速度×時間,即可求得,不過第二次相距70cm時,點早已到達(dá)點停止運(yùn)動;
(3)分兩種情況,一種在線段內(nèi),一種在線段的延長線上,根據(jù)速度=路程÷時間,即可求得點的速度.

試題解析:(1)設(shè)點Q的運(yùn)動速度為xcm/s,根據(jù)題意,得

解得x=0.8cm/s.

(2)OA+AB+BC=90cm>70cm,

∴分兩種情況,

QP的右側(cè),

經(jīng)過時間為

QP的左側(cè),

∵點Q運(yùn)動到點O時,立即停止運(yùn)動,

Q運(yùn)動的時間為

兩者相距70cm時運(yùn)動的時間為

綜合①②得知,經(jīng)過5秒和70秒的PQ兩點相距70cm.

(3)PA=2PB,分兩種情況,

①當(dāng)點PA. B兩點之間時,

PA=2PB

此時運(yùn)動的時間為

∵點Q運(yùn)動的位置恰好是線段AB的三等分,

Q的運(yùn)動速度為0.5cm/scm/s.

②當(dāng)點P在線段AB的延長線上時,

PA=2PB,

PA=2AB=120cm

此時運(yùn)動的時間為

∵點Q運(yùn)動的位置恰好是線段AB的三等分,

Q的運(yùn)動速度為cm/scm/s.

綜合①②得知,當(dāng)點PA. B兩點之間時,Q的運(yùn)動速度為0.5cm/scm/s,;當(dāng)點P在線段AB的延長線上時,Q的運(yùn)動速度為cm/scm/s.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中①∠A∶∠B∶∠C=112,②∠A +B=C,③∠B =90°-∠A,④∠A=B=C,⑤中,能確定△ABC是直角三角形的條件有_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)原計劃加工一批校服,現(xiàn)有甲、乙兩個工廠加工這批校服,已知甲工廠每天能加工這種校服16件,乙工廠每天加工這種校服24件,且單獨加工這批校服甲廠比乙廠要多用20

1)求這批校服共有多少件?

2)為了盡快完成這批校服,若先由甲、乙兩工廠按原速度合作一段時間后,甲工廠停工,而乙工廠每天的速度提高25%,乙工廠單獨完成剩下的部分,且乙工廠全部工作時間是甲工廠工作時間的2倍還多4天,求乙工廠加工多少天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A1,A2,A3B1,B2,B3分別在直線yx+bx軸上.OA1B1,B1A2B2,B2A3B3,都是等腰直角三角形如果點A111),那么點A2019的縱坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)弘揚(yáng)傳統(tǒng)文化的號召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學(xué)校團(tuán)委在活動啟動之初,隨機(jī)抽取部分學(xué)生調(diào)查一周詩詞誦背數(shù)量,根調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示.

大賽結(jié)束后一個月,再次抽查這部分學(xué)生一周詩詞誦背數(shù)量,繪制成統(tǒng)計表

一周詩詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

10

10

15

40

25

20

請根據(jù)調(diào)查的信息

(1)活動啟動之初學(xué)生一周詩詞誦背數(shù)量的中位數(shù)為  

(2)估計大賽后一個月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù);

(3)選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某淘寶商家計劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實際每天的銷售量與計劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):

星期

與計劃量的差值

+4

-3

-5

+14

-8

+21

-6

1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。

2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。

3)該店實行每日計件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, , AC=BC=3, ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.

【答案】

【解析】分析:過點DDGAB于點G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1

RtDCE中,由勾股定理求得,所以DB=;RtABC中,由勾股定理得;RtDGB中,由銳角三角函數(shù)求得, ;

設(shè)AF=DF=x,FG= ,RtDFG中,根據(jù)勾股定理得方程=解得,從而求得.的值

詳解:

如圖所示,過點DDGAB于點G.

根據(jù)折疊性質(zhì),可知AEFDEF,

∴AE=DE=2,AF=DFCE=AC-AE=1,

RtDCE中,由勾股定理得,

DB=

RtABC中,由勾股定理得;

RtDGB中, ;

設(shè)AF=DF=xFG=AB-AF-GB=,

RtDFG ,

=,

解得

==.

故答案為: .

點睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.

型】填空
結(jié)束】
18

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當(dāng)x=1.7時,[x]+(x)+[x)=6;

②當(dāng)x=-2.1時,[x]+(x)+[x)=-7;

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當(dāng)-1<x<1, 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個交點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.

1)兩次抽得紙牌均為紅桃的概率;(請用畫樹狀圖列表等方法寫出分析過程)

2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(a ,2)是直線y=x上一點,以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點,則的最小值為(

A. 1 B. C. —1 D.

查看答案和解析>>

同步練習(xí)冊答案