【題目】如圖,已知,,要計(jì)算,兩地的距離,甲、乙、丙、丁四組同學(xué)分別測量了部分線段的長度和角的度數(shù),得到以下四組數(shù)據(jù):甲:;乙:,;丙:;。,.其中能求得,兩地距離的有(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

分別根據(jù)直角三角形的性質(zhì)及相似三角形的判定與性質(zhì)對四組數(shù)據(jù)進(jìn)行逐一分析即可.

甲:∵已知AC、ACB,AB=ACtanACB,故甲組符合題意;

乙組:∵ABAEA,EFAEE,

AEEF,

∴∠A=E=90°,

∵∠ADB=EDF,

∴△DEF∽△DAB,

,

AB=,故乙組符合題意;

丙:∵∠E=90°,∴∠EDF=90°-DFE,

∵∠ADB=EDF,ADB是直角三角形,

AB=ADtanADB,故丙組正確;

丁組: CD,DE,ACB無法求得AB的長,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)

(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是 _ ▲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,為等邊三角形,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與、重合).以為邊作菱形,使,連接

如圖,當(dāng)點(diǎn)在邊上時(shí),

求證:;②請直接判斷結(jié)論是否成立;

如圖,當(dāng)點(diǎn)在邊的延長線上時(shí),其他條件不變,結(jié)論是否成立?請寫出、之間存在的數(shù)量關(guān)系,并寫出證明過程;

如圖,當(dāng)點(diǎn)在邊的延長線上時(shí),且點(diǎn)、分別在直線的異側(cè),其他條件不變,請補(bǔ)全圖形,并直接寫出、、之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BA=BC,BD是三角形的角平分線,DEBCABE,下列結(jié)論:①∠1=3;②;③。正確的有__________。(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根長為米的竹竿的影長為米,同時(shí)另一名同學(xué)測量樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺(tái)階上,測得此影子長為米,一級臺(tái)階高為米,如圖所示,若此時(shí)落在地面上的影長為米,則樹高為(

A. 11.5 B. 11.75 C. 11.8 D. 12.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】測量物體高度

小明想測量一棵樹的高度,在陽光下,小明測得一根長為米的竹竿的影長為米.同時(shí)另一名同學(xué)測量一棵樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長為米,落在地面上的影長為米,則樹高為多少米.

小明在某一時(shí)刻測得的桿子在陽光下的影子長為,他想測量電線桿的高度,但其影子恰好落在土坡的坡面和地面上,量得,,與地面成

求電線桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,EDC上一點(diǎn)(點(diǎn)E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點(diǎn)D的對應(yīng)點(diǎn)為D′,點(diǎn)F為線段BC上一點(diǎn),連接EF,以EF所在的直線為折痕折疊紙片,使點(diǎn)C的對應(yīng)點(diǎn)C′落在直線ED′上,若CF=4時(shí),DE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線BC,直線BDx軸交于點(diǎn)A,點(diǎn)B2,3),點(diǎn)D0).

1)求直線BD的函數(shù)解析式;

2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);

3)如圖2,E為線段AC上一點(diǎn),連結(jié)BE,一動(dòng)點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動(dòng)到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動(dòng)到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間為t,求t的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為

求該拋物線的解析式;

若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);

設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),作軸交拋物線于點(diǎn),求線段長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案