【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與 O的位置關(guān)系,并證明你的結(jié)論;
(3)若 O的直徑為3,cosB= ,求DE的長(zhǎng).
【答案】
(1)解:證明:連結(jié)CD,如圖,
∵BC為直徑,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
即點(diǎn)D是AB的中點(diǎn);
(2)解:DE與⊙O相切.理由如下:
連結(jié)OD,
∵AD=BD,OC=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
而DE⊥AC,
∴DE⊥OD,
∴DE為⊙O的切線.
(3)解:連結(jié)CD,如圖,
∵BC為直徑,
∴∠BDC=90°,
在Rt△BDC中,∵cosB= ,
∴BD= BC= ×3=1,
∴AD=BD=1,
在Rt△ADE中,∵cosA=cosB= =
∴AE= AD= ,
∴DE= = = .
【解析】(1)連結(jié)OD,如圖,由OD=OB得到∠ODB=∠B,由CA=CB得到∠A=∠B,則∠ODB=∠A,則可判斷OD∥AC,易得BD=AD,即點(diǎn)D是AB的中點(diǎn);(2)由于OD∥AC,DE⊥AC,所以DE⊥OD,于是根據(jù)切線的判定定理可得DE為⊙O的切線;(3)連結(jié)CD,如圖,根據(jù)圓周角定理得到∠BDC=90°,則在Rt△BDC中,利用余弦定義可計(jì)算出BD= BC=1,所以AD=BD=1,接著在Rt△ADE中,利用余弦定義可計(jì)算出AE= AD= ,然后根據(jù)勾股定理可計(jì)算出DE的長(zhǎng).
【考點(diǎn)精析】通過靈活運(yùn)用切線的判定定理,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,點(diǎn)E是CD上一點(diǎn),且DE=2,CE=3,射線AE與射線BC相交于點(diǎn)F;
(1)求 的值;
(2)如果 = , = ,求向量 ;(用向量 、 表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解高郵市6000名九年級(jí)學(xué)生英語(yǔ)口語(yǔ)考試成績(jī)的情況,從中隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分30分,得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分) | x≤10 | 11≤x≤15 | 16≤x≤20 | 21≤x≤25 | 26≤x≤30 |
人 數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)本次抽樣調(diào)查共抽取了名學(xué)生;
(2)若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為x≤10的人數(shù)所對(duì)應(yīng)扇形的圓心角為°;
(3)學(xué)生英語(yǔ)口語(yǔ)考試成績(jī)的眾數(shù)落在11≤x≤15的分?jǐn)?shù)段內(nèi);(填“會(huì)”或“不會(huì)”)
(4)若將26分以上(含26)定為優(yōu)秀,請(qǐng)估計(jì)該區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖1、圖2補(bǔ)充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E是 上的一動(dòng)點(diǎn)(不與A、B重合),點(diǎn)F是 上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且∠EOF=90°,有以下結(jié)論,其中正確的個(gè)數(shù)是( ). ① = ; ②△OGH是等腰三角形; ③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長(zhǎng)的最小值為4+ .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸、y軸上,反比例函數(shù)y= (x>0)的圖像經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點(diǎn)G在CD上,DE=2,將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,得到正方形DE′F′G′,此時(shí)點(diǎn)G′在AC上,連接CE′,則CE′+CG′=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A4紙復(fù)印文件,在甲復(fù)印店不管一次復(fù)印多少頁(yè),每頁(yè)收費(fèi)0.1元.在乙復(fù)印店復(fù)印同樣的文件,一次復(fù)印頁(yè)數(shù)不超過20時(shí),每頁(yè)收費(fèi)0.12元;一次復(fù)印頁(yè)數(shù)超過20時(shí),超過部分每頁(yè)收費(fèi)0.09元. 設(shè)在同一家復(fù)印店一次復(fù)印文件的頁(yè)數(shù)為x(x為非負(fù)整數(shù)).
(1)根據(jù)題意,填寫下表:
一次復(fù)印頁(yè)數(shù)(頁(yè)) | 5 | 10 | 20 | 30 | … |
甲復(fù)印店收費(fèi)(元) | 0.5 | 2 | … | ||
乙復(fù)印店收費(fèi)(元) | 0.6 | 2.4 | … |
(2)設(shè)在甲復(fù)印店復(fù)印收費(fèi)y1元,在乙復(fù)印店復(fù)印收費(fèi)y2元,分別寫出y1 , y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)x>70時(shí),顧客在哪家復(fù)印店復(fù)印花費(fèi)少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+4(a≠0)與x軸交于點(diǎn)A和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)D是拋物線在第一象限的點(diǎn).
(1)當(dāng)△ABD的面積為4時(shí),
①求點(diǎn)D的坐標(biāo);
②聯(lián)結(jié)OD,點(diǎn)M是拋物線上的點(diǎn),且∠MDO=∠BOD,求點(diǎn)M的坐標(biāo);
(2)直線BD、AD分別與y軸交于點(diǎn)E、F,那么OE+OF的值是否變化,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com