【題目】在平面直角坐標(biāo)系中,若x軸上的點Ay軸上的點B同時在某函數(shù)的圖象上則稱AOB為該函數(shù)圖象的截距三角形,如圖①,AOB為直線l截距三角形

1)某一次函數(shù)圖象的截距三角形是等腰直角三角形,請寫出一個符合條件的函數(shù)表達(dá)式(寫出一個即可);

2)如圖②,若拋物線y=﹣x2+bx+c在第一象限的截距三角形與直線y=﹣x+4截距三角形完全重合,求這條拋物線對應(yīng)的函數(shù)表達(dá)式;

3)如圖③,在(2)的條件下,在第一象限的拋物線上任取一點P,過點Px軸的平行線與拋物線在第一象限的截距三角形的直角邊或直角邊的延長線交于點D,與斜邊或斜邊的延長線交于點E,設(shè)點P的橫坐標(biāo)為m,線段DE的長度為d.求dm之間的函數(shù)關(guān)系式;

4)如圖④,在(3)的條件下,過點EEFy軸交x軸于點F.求四邊形ODEF的周長不變時m的取值范圍.

【答案】(1)y=﹣x+2(答案不唯一);(2)y=﹣x2+3x+4;(3)d=|m2﹣3m|;(4)m>3或m<0.

【解析】

1)按照條件,寫出表達(dá)式即可,答案不唯一;

2)點(40)、(0,4)是拋物線上的點,將這兩個點的坐標(biāo)代入拋物線表達(dá)式,即可求解;

3)設(shè)點Pm-m2+3m+4),則點Em2-3m,-m2+3m+4),d=DE=m2-3m,即可求解;

4)四邊形ODEF的周長=2OD+2CE=2m2-3m-m2+3m+4=8,d=DE=m2-3m0,即可求解.

1y=﹣x+2(答案不唯一);

2y=﹣x+4,令x4,則y4,令y0,則x4

則點(4,0)、(0,4)是拋物線上的點,

將這兩個點的坐標(biāo)代入拋物線表達(dá)式得:,解得:

故拋物線的表達(dá)式為:y=﹣x2+3x+4;

3)設(shè)點Pm,﹣m2+3m+4),則點Em23m,﹣m2+3m+4),

①當(dāng)點P在點C之上時,

即﹣m2+3m+4≥4(即:0≤m≤3),

dDE=﹣(m23m)=﹣m2+3m;

②當(dāng)點P在點C之下,

同理dDEm23m,此時,m3m0

綜上,d|m23m|

4)由(2)知:

①當(dāng)點P在點C之上時,

四邊形ODEF的周長=2OD+2CE2(﹣m2+3mm2+3m+4)=﹣4m2+12m+16,不是常數(shù);

②當(dāng)點P在點C之下時,

四邊形ODEF的周長=2OD+2CE2m23mm2+3m+4)=8,是常數(shù);

m3m0,四邊形ODEF的周長不變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由AB勻速運動,E點同時以1cm/秒的速度在線段BC上由BC勻速運動,設(shè)運動時間為t秒(0<t<5).

(1)求證:△ACD∽△BAC;

(2)求DC的長;

(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)x0)經(jīng)過點A2,3)和點B(點B在點A的右側(cè)),作BCy軸,垂足為點C,連結(jié)AB,ACAO,BO

1)求反比例函數(shù)的解析式;

2)若∠ACB=45°,求直線AB的解析式;

3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點,與軸交于點.

(1)求這個拋物線的解析式;

(2)以每秒一個單位的速度沿軸向右平移,平移時間為秒,平移后的重疊部分的面積為重合時停止平移,求的函數(shù)關(guān)系式;

(3)軸上,連接,點關(guān)于直線的對稱點為,若點落在這個拋物線的對稱軸上,請直接寫出所有符合條件的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機抽樣的方法進(jìn)行問卷調(diào)查每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學(xué)生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)y的圖形交于Aa4)和B41)兩點

1)求b,k的值;

2)若點Cx,y)也在反比例函數(shù)yx0)的圖象上,求當(dāng)2x6時,函數(shù)值y的取值范圍;

3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線沒有交點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,EF分別是邊AD、BC的中點,點GCD上.且,DF、EG相交于點H

1)求出的值;

2)求證:EGDF;

3)過點HMNCD,分別交ADBC于點M、N,點PMN上一點,當(dāng)點P在什么位置時,△PDC的周長最小,并求△PDC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在教學(xué)實踐課中,小明為了測量學(xué)校旗桿CD的高度,在地面A處放置高度為1.5米的測角儀AB,測得旗桿頂端D的仰角為32°AC=22米,求旗桿CD的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin32°≈0.53cos32°≈0.85,tan32°≈0.62

查看答案和解析>>

同步練習(xí)冊答案