【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2;
(3)△A1B1C1與△A2B2C2關(guān)于某個(gè)點(diǎn)對(duì)稱,則這個(gè)點(diǎn)的坐標(biāo)為 .
【答案】(1)如圖所示,△A1B1C1即為所求.見解析;(2)如圖所示,△A2B2C2即為所求.見解析;(3)點(diǎn)P坐標(biāo)為(0,),
【解析】
(1)分別將點(diǎn)A,B,C分別向上平移5個(gè)單位后得到對(duì)應(yīng)點(diǎn),再首尾順次連接可得;
(2)分別作出點(diǎn)A,B,C關(guān)于原點(diǎn)的對(duì)稱點(diǎn),再首尾順次連接即可得;
(3)連接A1A2,B1B2,C1C2,交點(diǎn)即為所求,再根據(jù)中點(diǎn)公式可得對(duì)稱點(diǎn)坐標(biāo).
解:(1)如圖所示,△A1B1C1即為所求.
(2)如圖所示,△A2B2C2即為所求.
(3)如圖,點(diǎn)P即為所求,其中點(diǎn)P坐標(biāo)為(,),即(0,),
故答案為:(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是圓上一動(dòng)點(diǎn),弦,是的平分線,.
(1)當(dāng)等于多少度時(shí),四邊形有最大面積?最大面積是多少?
(2)當(dāng)的長(zhǎng)為多少時(shí),四邊形是梯形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,且,點(diǎn)為中點(diǎn),連接、交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,連接,請(qǐng)直接寫出圖中面積等于面積2倍的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電生產(chǎn)廠家去年銷往農(nóng)村的某品牌洗碗機(jī)每臺(tái)的售價(jià)(元)與月份之間滿足函數(shù)關(guān)系,去年的月銷售量戶(萬臺(tái))與月份之間成一次函數(shù)關(guān)系,其中兩個(gè)月的銷售情況如表:
月份: | 1月 | 5月 |
銷售量: | 3.9萬臺(tái) | 4.3萬臺(tái) |
(1)求該品牌洗碗機(jī)在去年哪個(gè)月銷往農(nóng)村的銷售金額最大?最大是多少?(提示:銷售金額=銷量×售價(jià))
(2)經(jīng)統(tǒng)計(jì)和計(jì)算.得到此洗碗機(jī)在農(nóng)村地區(qū)的銷售數(shù)據(jù),如表:
銷售數(shù)據(jù)信息表 | 售價(jià)(元/臺(tái)) | 銷量(萬臺(tái)) | 補(bǔ)貼金額(萬元) |
去年12月份 | 2000 | 5 | / |
今年2月份 | / | ||
今年3月份 | 312 |
由于國(guó)家實(shí)施“家電下鄉(xiāng)政策”,所以今年3月份國(guó)家按該產(chǎn)品售價(jià)的13%給子財(cái)政補(bǔ)貼,共補(bǔ)貼了312萬元,從表格中,我們可以看出:今年3月份與今年2月份相比較,售價(jià)保持不變,但銷量增加了1.5萬臺(tái).今年2月份與去年12月份相比較,售價(jià)下降了%,銷量下降了1.5%;請(qǐng)用表示表格中的,,并根據(jù)已知條件求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)動(dòng)員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時(shí)間t(s)滿足二次函數(shù)關(guān)系,t與h的幾組對(duì)應(yīng)值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);
(2)求小球飛行3s時(shí)的高度;
(3)問:小球的飛行高度能否達(dá)到22m?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問題: 問題:“在平面內(nèi),已知分別有個(gè)點(diǎn),個(gè)點(diǎn),個(gè)點(diǎn),5 個(gè)點(diǎn),…,n 個(gè)點(diǎn),其中任意三 個(gè)點(diǎn)都不在同一條直線上.經(jīng)過每?jī)牲c(diǎn)畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個(gè)問題,希望小組的同學(xué)們?cè)O(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點(diǎn)的一條直線)
請(qǐng)解答下列問題:
(1)請(qǐng)幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com