【題目】如圖,在直角坐標系中,已知點A(﹣3,0),B0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2020的直角頂點的坐標為_____

【答案】8076,0

【解析】

先利用勾股定理求得AB的長,再找到圖形變換規(guī)律為:△OAB每連續(xù)3次后與原來的狀態(tài)一樣,然后求得△2020的橫坐標,進而得到答案.

A-3,0),B0,4),
OA=3,OB=4
AB==5,
∴△ABC的周長=3+4+5=12,
圖形變換規(guī)律為:△OAB每連續(xù)3次后與原來的狀態(tài)一樣,
2020÷3=6731
∴△2020的直角頂點是第673個循環(huán)組后第一個三角形的直角頂點,
∴△2020的直角頂點的橫坐標=673×12=8076,
∴△2020的直角頂點坐標為(8076,0

故答案為:(8076,0.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點A10.0)及在第一象限的動點Px,y),且x+y12,設△OPA的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)求x的取值范圍;

3)當S15時,求P點坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點M放在正方形ABCD的對角線AC(不與點A重合)上滑動,連結(jié)DM,做MN⊥DM,交直線ABN

(1)求證:DM=MN;

(2)若將(1)中的正方形變?yōu)榫匦危溆鄺l件不變?nèi)鐖D,且DC=2AD,求MD:MN的值;

(3)在(2)中,若CD=nAD,當M滑動到CA的延長線上時(如圖3),請你直接寫出MDMN的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級1200名學生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了100名學生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:

成績(分)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

人 數(shù)

1

2

3

3

6

7

5

8

15

9

11

12

8

6

4

成績分組

頻數(shù)

頻率

35≤x<38

3

0.03

38≤x<41

a

0.12

41≤x<44

20

0.20

44≤x<47

35

0.35

47≤x≤50

30

b

請根據(jù)所提供的信息解答下列問題∶

(1)樣本的中位數(shù)是 分;

(2)頻率統(tǒng)計表中a ,b

(3)請補全頻數(shù)分布直方圖;

(4)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次大賽中成績不低于41分的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】折疊矩形ABCD,使點D落在BC邊上的點F處.

1)求證:ABF∽△FCE;

2)若DC8CF4,求矩形ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,點P是AD邊上的一個動點,點A關(guān)于直線BP的對稱點是點Q,連接PQ、DQ、CQ、BQ,設AP=x.

(1)BQ+DQ的最小值是_______,此時x的值是_______;

(2)如圖,若PQ的延長線交CD邊于點E,并且CQD=90°

求證:點E是CD的中點; 求x的值.

(3)若點P是射線AD上的一個動點,請直接寫出當CDQ為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列一元二次方程:

(1)2x2﹣5x﹣1=0(用配方法解);(2)(2x﹣5)2=9(x+4)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為正方形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙OBC相切于點E.

(1)求證:CD是⊙O的切線;

(2)若正方形ABCD的邊長為10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M=3a2-2ab+b2 N=2a2+ab-3b2

1)化簡2M-3N;

2)若27a-12+3|b+1|=0,求2M-3N的值.

查看答案和解析>>

同步練習冊答案