【題目】解方程:
我們已經(jīng)學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認為適當?shù)姆椒ń膺@個方程.
① ② ③ ④
我選擇第 個方程。
【答案】① ② ③ ④
【解析】試題分析:①此方程利用公式法解比較方便;②此方程利用因式分解法解比較方便;③此方程利用公式法解比較方便;④此方程利用因式分解法解比較方便.
試題解析:
我選第①個方程,解法如下:
x2-4x-1=0,
這里a=1,b=-4,c=-1,
∵△=16+4=20,
∴x= =2±,
則x1=2+,x2=2-;
我選第②個方程,解法如下:
x(2x+1)=8x-3,
整理得:2x2-7x+3=0,
分解因式得:(2x-1)(x-3)=0,
可得2x-1=0或x-3=0,
解得:x1=,x2=3;
我選第③個方程,解法如下:
x2+3x+1=0,
這里a=1,b=3,c=1,
∵△=9-4=5,
∴x= ,
則x1=,x2=;
我選第④個方程,解法如下:
x2-9=4(x-3),
變形得,(x+3)(x-3)-4(x-3)=0,
因式分解得,(x-3)(x+3-4)=0,
∴x-3=0或x+3-4=0,
∴x1=3,x2=1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對角線BD上一點P,作EF∥BC,HG∥AB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關系為( 。
A.S1=S2 B.S1>S2 C.S1<S2 D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點 A 表示的數(shù)為 6,B 是數(shù)軸上在 A 左側的一點,且 A, B 兩點間的距離為 10.動點 P 從點 A 出發(fā),以每秒 6 個單位長度的速度沿數(shù)軸 向左勻速運動,設運動時間為 t(t>0)秒.
(1)數(shù)軸上點 B 表示的數(shù)是 ,點 P 表示的數(shù)是 (用含 t 的代數(shù) 式表示);
(2)動點 Q 從點 B 出發(fā),以每秒 4 個單位長度的速度沿數(shù)軸向左勻速運動,若 點 P、Q 時出發(fā).求:
①當點 P 運動多少秒時,點 P 與點 Q 相遇?
②當點 P 運動多少秒時,點 P 與點 Q 間的距離為 8 個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并填空: 在體育比賽中,我們常常會遇到計算比賽場次的問題,這時我們可以借助數(shù)線段的方法來計算.比如在一個小組中有 4 個隊,進行單循環(huán)比賽,我們要計算總的比賽場次,我們就 設這四個隊分別為 A、B、C、D,并把它們標在同一條線段上,如下圖:
因為單循環(huán)比賽就是每兩個隊之間都要比賽一場,這就相當于,在上述圖形中四個點連接線段,按一定規(guī)律得到的線段有:
AB,AC,AD…………3 條
BC,BD………………2 條
CD……………………1 條
總的線段條數(shù)是 3+2+1=6
所以可知 4 個隊進行單循環(huán)比賽共比賽六場.
(1).類比上述想法,若一個小組有 6 個隊,進行單循環(huán)比賽,則總的比賽場次是_____
(2).類比上述想法,若一個小組有 n 個隊,進行單循環(huán)比賽,則總的比賽場次是_____
(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 個 代表隊.第一階段每個小組進行單循環(huán)比賽.則第一階段共 需 要 進 行_______ 場比賽.
(4).若分成 m 個小組,每個小組有 n 個隊,第一階段每個小組進行單循環(huán)比賽.則第 一階段共需要進行_____________場比賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別延長□ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結CG,AH.
求證:CG∥AH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx﹣3與x軸交于A、B兩點,與y軸交于點C,O是坐標原點,已知點B的坐標是(3,0),tan∠OAC=3;
(1)求該拋物線的函數(shù)表達式;
(2)點P在x軸上方的拋物線上,且∠PAB=∠CAB,求點P的坐標;
(3)若平行于x軸的直線與拋物線交于點M、N(M點在N點左側),
①若以MN為直徑的圓與x軸相切,求該圓的半徑;
②若Q(m,4)是直線MN上一動點,當以點C、B、Q為頂點的三角形的面積等于6時,請直接寫出符合條件的m值,為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD交于點O,給出下列四組條件:①AB∥CD,AD∥BC;②AB∥CD,∠A=∠C;③AO=CO,BO=DO;④AB∥CD,AD=BC.
一定能判定四邊形ABCD是平行四邊形的條件有----------------------------( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC紙片中,∠ACB=90°,AC=6,BC=8,P是AB邊上一點,連接CP.沿CP把Rt△ABC紙片裁開,要使△ACP是等腰三角形,那么AP的長度是________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com