【題目】解方程:

我們已經(jīng)學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認為適當?shù)姆椒ń膺@個方程.

我選擇第 個方程。

【答案】

【解析】試題分析:①此方程利用公式法解比較方便;②此方程利用因式分解法解比較方便;③此方程利用公式法解比較方便;④此方程利用因式分解法解比較方便.

試題解析:

我選第①個方程,解法如下:

x2-4x-1=0,

這里a=1,b=-4,c=-1,

∵△=16+4=20,

∴x= =2±,

x1=2+,x2=2-;

我選第②個方程,解法如下:

x(2x+1)=8x-3,

整理得:2x2-7x+3=0,

分解因式得:(2x-1)(x-3)=0,

可得2x-1=0x-3=0,

解得:x1=,x2=3;

我選第③個方程,解法如下:

x2+3x+1=0,

這里a=1,b=3,c=1,

∵△=9-4=5,

∴x=

x1=,x2=;

我選第④個方程,解法如下:

x2-9=4(x-3),

變形得,(x+3)(x-3)-4(x-3)=0,

因式分解得,(x-3)(x+3-4)=0,

∴x-3=0x+3-4=0,

∴x1=3,x2=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD上一點P,作EFBC,HGAB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關系為( 。

AS1=S2 BS1>S2 CS1<S2 D不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全面兩孩政策實施后,甲,乙兩個家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問題

(1家庭已有一個男孩,準備生一個孩子,第二個孩子是女孩的率是 ;

(2)乙家庭沒有孩子,準備生兩個孩子求至少有一個孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點 A 表示的數(shù)為 6,B 是數(shù)軸上在 A 左側的一點,且 A, B 兩點間的距離為 10.動點 P 從點 A 出發(fā),以每秒 6 個單位長度的速度沿數(shù)軸 向左勻速運動,設運動時間為 tt0)秒.

1)數(shù)軸上點 B 表示的數(shù)是 ,點 P 表示的數(shù)是 (用含 t 的代數(shù) 式表示);

2動點 Q 從點 B 出發(fā),以每秒 4 個單位長度的速度沿數(shù)軸向左勻速運動 P、Q 時出發(fā).求:

①當點 P 運動多少秒時,點 P 與點 Q 相遇?

②當點 P 運動多少秒時,點 P 與點 Q 間的距離為 8 個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并填空在體育比賽中我們常常會遇到計算比賽場次的問題,這時我們可以借助數(shù)線段的方法來計算.比如在一個小組中有 4 個隊,進行單循環(huán)比賽,我們要計算總的比賽場次,我們就 設這四個隊分別為 A、B、C、D,并把它們標在同一條線段上,如下圖:

因為單循環(huán)比賽就是每兩個隊之間都要比賽一場,這就相當于在上述圖形中四個點連接線段,按一定規(guī)律得到的線段有:

AB,AC,AD…………3

BC,BD………………2

CD……………………1

總的線段條數(shù)是 3+2+1=6

所以可知 4 個隊進行單循環(huán)比賽共比賽六場.

(1).類比上述想法,若一個小組有 6 個隊,進行單循環(huán)比賽,則總的比賽場次是_____

(2).類比上述想法,若一個小組有 n 個隊,進行單循環(huán)比賽,則總的比賽場次是_____

(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 代表隊.第一階段每個小組進行單循環(huán)比賽.則第一階段共 _______ 場比賽.

(4).若分成 m 個小組,每個小組有 n 個隊,第一階段每個小組進行單循環(huán)比賽.則第 一階段共需要進行_____________場比賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別延長□ABCD的邊CD,ABE,F,使DE=BF,連接EF,分別交AD,BCG,H,連結CG,AH.

求證:CG∥AH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx﹣3與x軸交于A、B兩點,與y軸交于點C,O是坐標原點,已知點B的坐標是(3,0),tan∠OAC=3;

(1)求該拋物線的函數(shù)表達式;
(2)點P在x軸上方的拋物線上,且∠PAB=∠CAB,求點P的坐標;
(3)若平行于x軸的直線與拋物線交于點M、N(M點在N點左側),
①若以MN為直徑的圓與x軸相切,求該圓的半徑;
②若Q(m,4)是直線MN上一動點,當以點C、B、Q為頂點的三角形的面積等于6時,請直接寫出符合條件的m值,為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD交于點O,給出下列四組條件:①ABCD,ADBC;ABCD,A=C;AO=CO,BO=DO;ABCD,AD=BC.

一定能判定四邊形ABCD是平行四邊形的條件有----------------------------( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC紙片中,∠ACB=90°,AC=6,BC=8,PAB邊上一點,連接CP.沿CPRtABC紙片裁開,要使ACP是等腰三角形,那么AP的長度是________

查看答案和解析>>

同步練習冊答案