【題目】如圖,直線交軸于點,交軸于點,拋物線經(jīng)過點,交軸于點,點為拋物線上一動點,過點作軸的垂線,交直線于點,設(shè)點的橫坐標為.
(1)求拋物線的解析式.
(2)當點在直線下方的拋物線上運動時,求出長度的最大值.
(3)當以,,為頂點的三角形是等腰三角形時,求此時的值.
【答案】(1);(2)當時,線段的長度有最大值,最大值為;(3)的值為6或或或3
【解析】
(1)令即可得出點A的坐標,再根據(jù)點B的坐標利用待定系數(shù)法即可求得拋物線的解析式;
(2)由點D的橫坐標,可知點P和點D的坐標,再根據(jù)點在直線下方的拋物線上,即可表示PD解析式,并轉(zhuǎn)化為頂點式就可得出答案;
(3)根據(jù)題意分別表示出,,分當時,當時,當時三種情況分別求出m的值即可.
(1)對于,取,得,∴.
將,代入,
得解得
∴拋物線的解析式為.
(2)∵點的橫坐標為,
∴點的坐標為,點的坐標為,
∵點在直線下方的拋物線上,
∴
.
∵,
當時,線段的長度有最大值,最大值為.
(3)由,,,得,
,.
當為等腰三角形時,有三種情況:
①當時,,即,
解得(不合題意,舍去),;
②當時,,即,解得,;
③當時,,即,解得.
綜上所述,的值為6或或或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( )
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2ax+m.
(1)當a=2,m=﹣5時,求拋物線的最值;
(2)當a=2時,若該拋物線與坐標軸有兩個交點,把它沿y軸向上平移k個單位長度后,得到新的拋物線與x軸沒有交點,請判斷k的取值情況,并說明理由;
(3)當m=0時,平行于y軸的直線l分別與直線y=x﹣(a﹣1)和該拋物線交于P,Q兩點.若平移直線l,可以使點P,Q都在x軸的下方,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某公司用800萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,進一步投入資金1550萬元購買生產(chǎn)設(shè)備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價需要定在200元到300元之間較為合理.銷售單價(元)與年銷售量(萬件)之間的變化可近似的看作是如下表所反應(yīng)的一次函數(shù):
銷售單價(元) | 200 | 230 | 250 |
年銷售量(萬件) | 14 | 11 | 9 |
(1)請求出與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
(2)請說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歡歡放學(xué)回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.
(1)歡歡隨機地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?
(2)請用樹狀圖或列表法表示歡歡隨機地從桌上取出兩個禮包的所有可能結(jié)果,并求取出的兩個禮包都是智能對話機器人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線y=x-2與x軸、y軸分別交于點B、C,半徑為1的⊙P的圓心P從點A(4,m )出發(fā)以每秒個單位長度的速度沿射線AC的方向運動,設(shè)點P運動的時間為t秒,則當t=_____秒時,⊙P與坐標軸相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個與地面垂直的截面中建立直角坐標系(橫坐標表示地面位移,縱坐標表示高度),一架無人機的飛行路線為y=ax2+bx+c(a≠0),在直角坐標系中x軸上的線段AB上的某點起飛,途經(jīng)空中線段EF上的某點,最后在線段CD上的某點降落,其中A(﹣2,0)、B(﹣1,0)、C(3,0)、D(4,0)、E(0,3)、F(0,2),則下列結(jié)論正確的有_____(填序號)
(1)abc<0;
(2)從起飛到當x≤1時無人機一直是上升的;
(3)2≤a+b+c≤4.5;
(4)最大飛行高度不超過4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文明小區(qū)50平方米和80平方米兩種戶型的住宅,50平方米住宅套數(shù)是80平方米住宅套數(shù)的2倍.物管公司月底按每平方米2元收取當月物管費,該小區(qū)全部住宅都人住且每戶均按時全額繳納物管費.
(1)該小區(qū)每月可收取物管費90 000元,問該小區(qū)共有多少套80平方米的住宅?
(2)為建設(shè)“資源節(jié)約型社會”,該小區(qū)物管公司5月初推出活動一:“垃圾分類送禮物”,50平方米和80平方米的住戶分別有40%和20%參加了此次括動.為提離大家的積扱性,6月份準備把活動一升級為活動二:“拉圾分類抵扣物管費”,同時終止活動一.經(jīng)調(diào)査與測算,參加活動一的住戶會全部參加活動二,參加活動二的住戶會大幅增加,這樣,6月份參加活動的50平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費將會減少;6月份參加活動的80平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費將會減少.這樣,參加活動的這部分住戶6月份總共繳納的物管費比他們按原方式共繳納的物管費將減少,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com