【題目】如圖,在菱形ABCD中,ACBD相交于點O,AB4BD4,EAB的中點,點P為線段AC上的動點,則EP+BP的最小值為( 。

A. 4B. 2C. 2D. 8

【答案】C

【解析】

連結DEAC于點P,連結BP,根據菱形的性質推出AOBD的垂直平分線,推出PE+PB=PE+PD=DE且值最小,根據勾股定理求出DE的長即可.

如圖,設AC,BD相交于O

∵四邊形ABCD是菱形,

ACBD,AOAC,BOBD2,

AB4,

AO2

連結DEAC于點P,連結BP,作EMBD于點M

∵四邊形ABCD是菱形,

ACBD,且DOBO,即AOBD的垂直平分線,

PDPB,

PE+PBPE+PDDE且值最小,

EAB的中點,EMBD,

EMAO1,BMBO,

DMDO+OMBO3

DE,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“六一”兒童節(jié)前夕,某部隊戰(zhàn)士到福利院慰問兒童.戰(zhàn)士們從營地出發(fā),勻速步行前往文具店選購禮物,停留一段時間后,繼續(xù)按原速步行到達福利院(營地、文具店、福利院三地依次在同一直線上).到達后因接到緊急任務,立即按原路勻速跑步返回營地(贈送禮物的時間忽略不計),下列圖象能大致反映戰(zhàn)

士們離營地的距離與時間之間函數(shù)關系的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.

(參考數(shù)據:sin22°,cos22°tan22°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點.

(1)求b的值;

(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值;

(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結合新圖象回答:當直線y=x+n與這個新圖象有兩個公共點時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工.若進行粗加工,每噸加工費用為600元,需天,每噸售價4000元;若進行精加工,每噸加工費用為900元,需天,每噸售價4500元.現(xiàn)將這50噸原料全部加工完.設其中粗加工x噸,獲利y元.

(1)請完成表格并求出yx的函數(shù)關系式(不要求寫自變量的范圍);

(2)如果必須在20天內完成,如何安排生產才能獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從A地到B地的公路需要經過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°。因城市規(guī)劃的需要,將在AB兩地之間修建一條筆直的公路。

1)求改直后的公路AB的長;

2)問:公路改造后比原來縮短了多少千米?

sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,ADCD,(點D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長線相交于點E,且DE=12,AD=9,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,AB=2,ADBE是圓O的兩條切線,A、B為切點,過圓上一點C⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過原點,與軸的另一個交點為,將拋物線向右平移個單位得到拋物線, 軸于 兩點(點在點的左邊),交軸于點

)求拋物線的解析式及頂點坐標.

)以為斜邊向上作等腰直角三角形,當點落在拋物線的對稱軸上時,求拋物線的解析式.

)若拋物線的對稱軸存在點,使為等邊三角形,請直接寫出的值.

查看答案和解析>>

同步練習冊答案