【題目】計(jì)算:
(1)﹣3﹣(﹣4)+2;
(2)(﹣6)÷2×(﹣ );
(3)(﹣ + )×(﹣24);
(4)﹣14﹣7÷[2﹣(﹣3)2].

【答案】
(1)解:原式=﹣3+4+2=3
(2)解:原式=6× × =
(3)解:原式=12﹣20+14=6
(4)解:原式=﹣1﹣7÷(﹣7)=﹣1+1=0
【解析】(1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;(2)原式從左到右依次計(jì)算即可得到結(jié)果;(3)原式利用乘法分配律計(jì)算即可得到結(jié)果;(4)原式先計(jì)算乘方運(yùn)算,再計(jì)算除法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.
【考點(diǎn)精析】本題主要考查了有理數(shù)的四則混合運(yùn)算的相關(guān)知識點(diǎn),需要掌握在沒有括號的不同級運(yùn)算中,先算乘方再算乘除,最后算加減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接DC,

(1)請找出圖②中的全等三角形,并給予說明(說明:結(jié)論中不得含有未標(biāo)識的字母);
(2)試說明:DC⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正比例函數(shù)y=(a+1)x的圖象經(jīng)過第二四象限,若a同時(shí)滿足方程x2+(1-2a)x+a2=0,判斷此方程根的情況_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里
+6,﹣8,﹣0.4,0,230%, ,﹣1 ,﹣(﹣5),﹣|﹣2|,﹣ ,0.010010001…,﹣2.33…
(1)正數(shù)集合:{};
(2)負(fù)數(shù)集合:{ };
(3)整數(shù)集合:{};
(4)無理數(shù)集合:{}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)代數(shù)式x2+3x+5的值等于7時(shí),代數(shù)式3x2+9x﹣2的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法正確的是

A. 每個(gè)內(nèi)角都是120°的六邊形一定是正六邊形.

B. n邊形的對稱軸不一定有n條.

C. n邊形的每一個(gè)外角度數(shù)等于它的中心角度數(shù).

D. 正多邊形一定既是軸對稱圖形,又是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長方形紙條上畫一條數(shù)軸.

(1)若折疊紙條,數(shù)軸上表示﹣3的點(diǎn)與表示1的點(diǎn)重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為;
(2)若經(jīng)過某次折疊后,該數(shù)軸上的兩個(gè)數(shù)a和b表示的點(diǎn)恰好重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為(用含a,b的代數(shù)式表示);
(3)若將此紙條沿虛線處剪開,將中間的一段紙條對折,使其左右兩端重合,這樣連續(xù)對折n次后,再將其展開,請分別求出最左端的折痕和最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7如圖已知二次函數(shù)的圖象與x軸負(fù)半軸交點(diǎn)A-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B

1求一次函數(shù)解析式;

2求頂點(diǎn)P的坐標(biāo);

3平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);

(4)設(shè)拋物線的對稱軸交x軸與點(diǎn)E,聯(lián)結(jié)APy軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動點(diǎn),聯(lián)結(jié)QD、QN,請直接寫出QD+QN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)長方形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).

現(xiàn)有19張硬紙板,裁剪時(shí) x 張用A方法,其余用B方法.
(1)分別求裁剪出的側(cè)面和底面的個(gè)數(shù)(用含 x 的式子表示);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

同步練習(xí)冊答案