【題目】已知:如圖,△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿ABBC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s)

解答下列各問題:

(1)求△ABC的面積

(2)當(dāng)t為何值時(shí),△PBQ是直角三角形?

(3)設(shè)四邊形APQC的面積為y(cm2),求yt的關(guān)系式;

(4)是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出t的值:不存在請(qǐng)說明理由

【答案】1;(2t=24;(3,(4)不存在.

【解析】

1)過點(diǎn)AADBC,求出AD的長(zhǎng),利用三角形的面積公式進(jìn)行解答即可;

2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根據(jù)BP,BQ的表達(dá)式和∠B的度數(shù)進(jìn)行求解即可.

3)本題可先用△ABC的面積-PBQ的面積表示出四邊形APQC的面積,即可得出y,t的函數(shù)關(guān)系式;

4)根據(jù)四邊形APQC的面積是ABC面積的三分之二,可得出一個(gè)關(guān)于t的方程,如果方程無解則說明不存在這樣的t值,如果方程有解,那么求出的t值即可.

解:(1)過點(diǎn)AADBC,則SABC=×BC×ABsin60°=×6×6×=

2)設(shè)經(jīng)過t秒△PBQ是直角三角形,

AP=tcm,BQ=tcm,

ABC中,AB=BC=3cm,∠B=60°,

BP=6-tcm,

PBQ中,BP=6-tcm,BQ=tcm,若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°,

當(dāng)∠BQP=90°時(shí),BQ=BP,

t=6-t),t=2(秒),

當(dāng)∠BPQ=90°時(shí),BP=BQ,

6-t=t,t=4(秒),

答:當(dāng)t=2秒或t=4秒時(shí),△PBQ是直角三角形.

3)過PPMBCM,

BPM中,sinB=,

PM=PBsinB=6-t),

SPBQ=BQPM=t6-t),

y=SABC-SPBQ=-×t×6-t

=,

yt的關(guān)系式為y=,

4)假設(shè)存在某一時(shí)刻t,使得四邊形APQC的面積是ABC面積的三分之二,

S四邊形APQC=SABC,

,

t2-6t+12=0,

=36-48=-12<0,

∴不存在某一時(shí)刻t,使四邊形APQC的面積是ABC面積的三分之二.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).

(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.

(2)直接寫出該拋物線開口方向和頂點(diǎn)坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC4,tanB2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以取( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠?/span>

(1) (2x-1)2=25

(2) 3x2-6x-1=0

(3) x2-4x-396=0

(4) (2-3x)+(3x-2)2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是原點(diǎn),兩點(diǎn)的坐標(biāo)分別為,.

1)以點(diǎn)為位似中心,在軸的左側(cè)將擴(kuò)大為原來的兩倍(即新圖與原圖的相似比為),畫出圖形,并寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo);

2)如果內(nèi)部一點(diǎn)的坐標(biāo)為,寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們不妨約定:對(duì)角線互相垂直的凸四邊形叫做十字形”.

(1)在平行四邊形、矩形、菱形、正方形中,一定是十字形的有   

(2)如圖1,在四邊形ABCD中,ABAD,且CBCD

①證明:四邊形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四邊形ABCD的面積.

(3)如圖2.A、BC、D是半徑為1的⊙O上按逆時(shí)針方向排列的四個(gè)動(dòng)點(diǎn),ACBD交于點(diǎn)E,若∠ADBCDBABDCBD.滿足AC+BD=3,求線段OE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3)

(1)求此二次函數(shù)的解析式;

(2)在拋物線上存在一點(diǎn)P使ABP的面積為10,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案