【題目】正方形、、、…按如圖所示的方式放置,點、、、…和點、、、…分別在直線和軸上,則點的坐標(biāo)是__________.(答案不需要化簡)
【答案】(,)
【解析】
根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征可得出點的坐標(biāo),結(jié)合正方形的性質(zhì)可得出點的坐標(biāo),同理得出的坐標(biāo),再得出的坐標(biāo),以此類推,根據(jù)點的坐標(biāo)變化找出的坐標(biāo),由此即可得出答案.
當(dāng)時,,
∴點的坐標(biāo)為(0,1),
∵四邊形為正方形,
∴點的坐標(biāo)為(1,1),
當(dāng)時,,
∴點的坐標(biāo)為(1,2),
∵四邊形為正方形,
∴點的坐標(biāo)為(3,2),
同理可得:點的坐標(biāo)為(3,4),點的坐標(biāo)為(7,4),點的坐標(biāo)為(7,8),點的坐標(biāo)為(15,8),……
∴點的坐標(biāo)為(,),
∴點的(,),
故答案為:(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點,.
(1)求的值,并將拋物線解析式化成頂點式;
(2)已知點,點為拋物線上一動點.求證:以為圓心,為半徑的圓與直線相切;
(3)在(2)的條件下,點為拋物線上一動點,作直線,與拋物線交于點.當(dāng)時,請直接寫出直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段鐵路的示意圖,段和段都是高架橋,段是隧道.已知,,,在段高架橋上有一盞吊燈,當(dāng)火車駛過時,燈光可垂直照射到車身上,已知火車甲沿方向勻速行駛,當(dāng)火車甲經(jīng)過吊燈時,燈光照射到火車甲上的時間是,火車甲通過隧道的時間是,如果從車尾經(jīng)過點時開始計時,設(shè)行駛的時間為,車頭與點的距離是.
(1)火車甲的速度和火車甲的長度
(2)求關(guān)于的函數(shù)解析式(寫出的取值范圍),并求當(dāng)為何值時,車頭差米到達(dá)點.
(3)若長度相等的火車乙以相同的速度沿方向行駛,且火車甲乙不在隧道內(nèi)會車(會車時兩車均不在隧道內(nèi)),火車甲先進(jìn)隧道,當(dāng)火車甲的車頭到達(dá)點時,火車乙的車頭能否到達(dá)點?若能到達(dá),至多駛過地點多少?若不能到達(dá),至少距離點多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形 ABCD 中,AB=5,AD=13,點 E 為 BC 上一點,將△ABE沿 AE 折疊,使點 B 落在長方形內(nèi)點 F 處,連接 DF 且 DF=12.
(1)試說明:△ADF 是直角三角形;
(2)求 BE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象與直線交于點
(1)求k的值;
(2)已知點,過點P作垂直于x軸的直線,交直線于點B,交函數(shù)于點C.
①當(dāng)時,判斷線段與的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用11000元購進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的2倍,但單價貴了10元.
(1)求該商家第一次購進(jìn)機(jī)器人多少個?
(2)若所有機(jī)器人都按相同的標(biāo)價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機(jī)器人的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想要測量學(xué)校操場上旗桿的高度,他作了如下操作:(1)在點處放置測角儀,測得旗桿頂?shù)难鼋?/span>;(2)量得測角儀的高度;(3)量得測角儀到旗桿的水平距離.利用銳角三角函數(shù)解直角三角形的知識,旗桿的高度可表示為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com