【題目】(1)解分式方程;
(2)已知(x2+px+q)(x2﹣3x+2)中,不含x3項和x項,求p,q的值.
【答案】(1)原方程無解;(2)p=3,q=2.
【解析】
(1)先去分母,把方程化為整式方程x(x+2)-(x-1)(x+2)=3,再解整式方程,然后進行檢驗確定原方程的解;
(2)先計算多項式乘多項式,再根據(jù)題意得到p-3=0,2p-3q=0,然后解關(guān)于p、q的方程組即可.
解:(1)去分母得x(x+2)﹣(x﹣1)(x+2)=3,
解得x=1,
檢驗:當x=1時,(x﹣1)(x+2)=0,則x=1為原方程的增根,
所以原方程無解;
(2)(x2+px+q)(x2﹣3x+2)=x4﹣3x3+2x2+px3﹣3px2+2px+qx2﹣3qx+2q=x4+(p﹣3)x3+(q+2﹣3p)x2+(2p﹣3q)x+2q,
∵多項式不含x3項和x項,
∴p﹣3=0,2p﹣3q=0,
∴p=3,q=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別是A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
A、B、C向左平移5個單位后的坐標分別為(-4,1),(-1,2),(-2,4),連接這三個點,得△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB周長最小,請畫出△PAB,并直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b和y2=﹣4x+a的圖象如圖所示,且A(0,4),C(﹣2,0).
(1)由圖可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求點B的坐標;
②求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),歷來有吃“粽子”的習(xí)俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計劃A生產(chǎn)線每小時加工粽子個數(shù)是B生產(chǎn)線每小時加工粽子個數(shù)的.
(1)若A生產(chǎn)線加工4000個粽子所用時間與B生產(chǎn)線加工4000個粽子所用時間之和恰好為18小時,則原計劃A、B生產(chǎn)線每小時加工粽子各是多少個?
(2)在(1)的條件下,原計劃A、B生產(chǎn)線每天均加工a小時,由于受其他原因影響,在實際加工過程中,A生產(chǎn)線每小時比原計劃少加工100個,B生產(chǎn)線每小時比原計劃少加工50個.為了盡快將粽子投放到市場,A生產(chǎn)線每天比原計劃多加工3小時,B生產(chǎn)線每天比原計劃多加工a小時.這樣每天加工的粽子不少于6300個,求a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同,正常水位時,大孔水面寬度AB=20m,頂點M距水面6m(即MO=6m),小孔頂點N距水面4.5m(即NC=4.5m),當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點P(x,y)的坐標滿足方程組
(1)求點P的坐標(用含m,n的式子表示);
(2)若點P在第四象限,且符合要求的整數(shù)m只有兩個,求n的取值范圍;
(3)若點P到x軸的距離為5,到y軸的距離為4,求m,n的值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米80元,試問鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com