【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上的一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo);
(3)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)y=;y=x﹣2;(2)點(diǎn)P的坐標(biāo)為(0,0)、(4,0);(3)點(diǎn)P的坐標(biāo)為(6,0)或(0,2).
【解析】
(1)將點(diǎn)A(3,1)代入y=,利用待定系數(shù)法求得反比例函數(shù)的解析式,再將點(diǎn)A(3,1)和B(0,-2)代入y=kx+b,利用待定系數(shù)法求得一次函數(shù)的解析式;
(2)首先求得AB與x軸的交點(diǎn)C的坐標(biāo),然后根據(jù)S△ABP=S△ACP+S△BCP即可列方程求得P的橫坐標(biāo);
(3)分兩種情況進(jìn)行討論:①點(diǎn)P在x軸上;②點(diǎn)P在y軸上.根據(jù)PA=OA,利用等腰三角形的對(duì)稱性求解.
(1)∵反比例函數(shù)y=(m≠0)的圖象過點(diǎn)A(3,1),
∴3=,解得m=3.
∴反比例函數(shù)的表達(dá)式為y=.
∵一次函數(shù)y=kx+b的圖象過點(diǎn)A(3,1)和B(0,-2),
∴,
解得:,
∴一次函數(shù)的表達(dá)式為y=x-2;
(2)如圖,設(shè)一次函數(shù)y=x-2的圖象與x軸的交點(diǎn)為C.
令y=0,則x-2=0,x=2,
∴點(diǎn)C的坐標(biāo)為(2,0).
∵S△ABP=S△ACP+S△BCP=3,
∴PC×1+PC×2=3,
∴PC=2,
∴點(diǎn)P的坐標(biāo)為(0,0)、(4,0);
(3)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,則P點(diǎn)的位置可分兩種情況:
①如果點(diǎn)P在x軸上,那么O與P關(guān)于直線x=3對(duì)稱,
所以點(diǎn)P的坐標(biāo)為(6,0);
②如果點(diǎn)P在y軸上,那么O與P關(guān)于直線y=1對(duì)稱,
所以點(diǎn)P的坐標(biāo)為(0,2).
綜上可知,點(diǎn)P的坐標(biāo)為(6,0)或(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點(diǎn)D,點(diǎn)E為BC中點(diǎn),連結(jié)DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數(shù);
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每斤4元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤6元的價(jià)格出售,每天可售出150斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函數(shù),求出它的解析式.
(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊿ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)P,PD⊥AC于點(diǎn)D.
(1)求證:PD是⊙O的切線.
(2)若∠CAB=120°,AB=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個(gè)正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,C是半圓弧上一點(diǎn),正方形DEFG的一邊DG在直徑AB上,另一邊DE過△ABC的內(nèi)切圓圓心O,且點(diǎn)E在半圓弧上.若正方形DEFG的面積為100,且△ABC的內(nèi)切圓半徑r=4,則半圓的直徑AB=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D為半徑OC上異于O,C的點(diǎn),過點(diǎn)D作AB⊥OC,交⊙O于A,B,點(diǎn)E在線段AB上,AE=CE,點(diǎn)P在線段EC的延長(zhǎng)線上,PB=PE.
(1)若OD=2,求弦AB的長(zhǎng);
(2)當(dāng)點(diǎn)D在線段OC(不含端點(diǎn))上移動(dòng)時(shí),直線PB與⊙O有怎樣的位置關(guān)系?請(qǐng)說明理由;
(3)點(diǎn)Q是⊙O上的一個(gè)動(dòng)點(diǎn),若點(diǎn)D為OC中點(diǎn)時(shí),線段PQ的最小值為多少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AB=AC=6,∠B=30°,E為BC上一點(diǎn),BE=2EC,DE=DC,∠ADC=60°,則AD的長(zhǎng)_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com