【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象交于點(diǎn)A3,1),且過點(diǎn)B0,﹣2).

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)如果點(diǎn)Px軸上的一點(diǎn),且ABP的面積是3,求點(diǎn)P的坐標(biāo);

3)若P是坐標(biāo)軸上一點(diǎn),且滿足PAOA,直接寫出點(diǎn)P的坐標(biāo).

【答案】(1)y=;y=x﹣2;(2)點(diǎn)P的坐標(biāo)為(0,0)、(4,0);(3)點(diǎn)P的坐標(biāo)為(6,0)(0,2).

【解析】

(1)將點(diǎn)A(3,1)代入y=,利用待定系數(shù)法求得反比例函數(shù)的解析式,再將點(diǎn)A(3,1)和B(0,-2)代入y=kx+b,利用待定系數(shù)法求得一次函數(shù)的解析式;

(2)首先求得ABx軸的交點(diǎn)C的坐標(biāo),然后根據(jù)SABP=SACP+SBCP即可列方程求得P的橫坐標(biāo);

(3)分兩種情況進(jìn)行討論:①點(diǎn)Px軸上;②點(diǎn)Py軸上.根據(jù)PA=OA,利用等腰三角形的對(duì)稱性求解.

(1)∵反比例函數(shù)y=(m≠0)的圖象過點(diǎn)A(3,1),

3=,解得m=3.

∴反比例函數(shù)的表達(dá)式為y=

∵一次函數(shù)y=kx+b的圖象過點(diǎn)A(3,1)和B(0,-2),

解得:,

∴一次函數(shù)的表達(dá)式為y=x-2;

(2)如圖,設(shè)一次函數(shù)y=x-2的圖象與x軸的交點(diǎn)為C.

y=0,則x-2=0,x=2,

∴點(diǎn)C的坐標(biāo)為(2,0).

SABP=SACP+SBCP=3,

PC×1+PC×2=3,

PC=2,

∴點(diǎn)P的坐標(biāo)為(0,0)、(4,0);

(3)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,則P點(diǎn)的位置可分兩種情況:

①如果點(diǎn)Px軸上,那么OP關(guān)于直線x=3對(duì)稱,

所以點(diǎn)P的坐標(biāo)為(6,0);

②如果點(diǎn)Py軸上,那么OP關(guān)于直線y=1對(duì)稱,

所以點(diǎn)P的坐標(biāo)為(0,2).

綜上可知,點(diǎn)P的坐標(biāo)為(6,0)或(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ABC為直角,以AB為直徑作OAC于點(diǎn)D,點(diǎn)EBC中點(diǎn),連結(jié)DE,DB.

(1)求證:DEO相切;

(2)若C=30°,求BOD的度數(shù);

(3)在(2)的條件下,若O半徑為2, 求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤4元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤6元的價(jià)格出售,每天可售出150斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價(jià)銷售.

(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是   斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知y=(m2+m)+(m﹣3)x+m2x的二次函數(shù),求出它的解析式.

(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊿ABC中,AB=AC,以AB為直徑的⊙OBC于點(diǎn)P,PD⊥AC于點(diǎn)D

1)求證:PD⊙O的切線.

2)若∠CAB=120°AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓的直徑,C是半圓弧上一點(diǎn),正方形DEFG的一邊DG在直徑AB上,另一邊DE過△ABC的內(nèi)切圓圓心O,且點(diǎn)E在半圓弧上.若正方形DEFG的面積為100,且△ABC的內(nèi)切圓半徑r=4,則半圓的直徑AB=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O,半徑OC=6,D為半徑OC上異于O,C的點(diǎn),過點(diǎn)DABOC,OA,B點(diǎn)E在線段AB,AECE,點(diǎn)P在線段EC的延長(zhǎng)線上,PBPE

(1)OD=2,求弦AB的長(zhǎng);

(2)當(dāng)點(diǎn)D在線段OC不含端點(diǎn)上移動(dòng)時(shí)直線PBO有怎樣的位置關(guān)系?請(qǐng)說明理由;

(3)點(diǎn)QO上的一個(gè)動(dòng)點(diǎn),若點(diǎn)DOC中點(diǎn)時(shí),線段PQ的最小值為多少?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,ABAC6,∠B30°,EBC上一點(diǎn),BE2EC,DEDC,∠ADC60°,則AD的長(zhǎng)_____

查看答案和解析>>

同步練習(xí)冊(cè)答案