【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+4x軸交于A,B兩點(點A在原點左側(cè),點B在原點右側(cè)),與y軸交于點C,已知OA1,OCOB

1)求拋物線的解析式;

2)若D2m)在該拋物線上,連接CDDB,求四邊形OCDB 的面積;

3)設(shè)E是該拋物線上位于對稱軸右側(cè)的一個動點,過點Ex軸的平行線交拋物線于另一點F,過點EEHx軸于點H,再過點FFGx軸于點G,得到矩形EFGH.在點E運動的過程中,當矩形EFGH為正方形時,求出該正方形的邊長.

【答案】(1)y=﹣x2+3x+4.;(216;(3)正方形的邊長為.

【解析】

1)先求出點C的坐標,則B的坐標即可求得,利用待定系數(shù)法即可求得拋物線的解析式;
2)求出D的坐標,作DMx軸于點E.則S四邊形OCDB=S梯形OCDM+SBMD,利用C、D的坐標即可求出四邊形OCDB的面積;
3)分兩種情況考慮,當點Ex軸上方和下方,根據(jù)EF關(guān)于對稱軸對稱,然后利用正方形的性質(zhì)即可列方程求解.

解:(1)在yax2+bx+4中,令x0,得y4,則點C的坐標是(0,4.

OCOB,

B的坐標是(4,0).

拋物線的解析式為y=﹣x2+3x+4.

2D2,m)在拋物線y=﹣x2+3x+4上,

4+6+4m,解得m6.所以D26.

DMx軸于點M,如圖①所示.

S四邊形OCDBS梯形OCDM+SBMD×4+6×2+×2×610+616

3拋物線的解析式為y=﹣x2+3x+4,

拋物線的對稱軸是x=﹣.

如圖②,設(shè)點E的坐標為(x,-x2+3x+4),則點F的坐標為(3-x,-x2+3x+4),EF= x-3-x=2x-3.

四邊形EFGH是正方形,

EF=EH.

Ex軸上方時,2x-3=-x2+3x+4,解得x1=,x2=(舍去)

EF=;當Ex軸下方時,2x-3=--x2+3x+4),解得x1=,x2=(舍去).

EF=.所以正方形的邊長為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中兩條直線OCBC,垂足為C,其OC2cm,∠COB60°,反比例函數(shù)y的圖象過點C.

(1)求:反比例函數(shù)表達式和點B的坐標.

(2)若現(xiàn)有長為1cm的線段MN在線段OB上沿OB方向以1cm/s的速度向點B運動(運動前點M與點O重合,N到點B停止運動),過M、NOB的垂線分別交直線OCBCP、Q兩點,線段MN運動的時間為ts.

①若△OMP的面積為S.求出當0t≤1時,St的函數(shù)關(guān)系式.

②線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若可能,直接寫出此時t的值;若不可能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?” .其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B出有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,求正方形城池的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長,寬的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).

1)要使長方體盒子的底面積為,求剪去的正方形的邊長;

2)你覺得折合而成的長方體盒子的側(cè)面積會不會有更大的情況?如果有,請求出側(cè)面積的最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論 a+b+c0ab+c0b+2a0abc0b24ac,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(m+1x2﹣(m+3x+20

1)證明:當m≠﹣1時,方程總有實數(shù)根;

2m為何整數(shù)時,方程有兩個不相等的正整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標有數(shù)字,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.

)嘉嘉隨機擲一次骰子,求落回到圈的概率

淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某二次函數(shù)圖象的頂點坐標為(1,-4),且經(jīng)過點C0,-3

1)求這個二次函數(shù)的表達式;

2)求圖象與x軸交點AB兩點的坐標(A在點B的左邊)及ABC的面積.

查看答案和解析>>

同步練習冊答案