【題目】己知:如圖1,⊙O的半徑為2, BC是⊙O的弦,點(diǎn)A是⊙O上的一動點(diǎn)。
圖1 圖2
(1)當(dāng)△ABC的面積最大時,請用尺規(guī)作圖確定點(diǎn)A位置(尺規(guī)作圖只保留作圖痕跡, 不需要寫作法);
(2)如圖2,在滿足(1)條件下,連接AO并延長交⊙O于點(diǎn)D,連接BD并延長交AC 的延長線于點(diǎn)E,若∠BAC=45° ,求AC2+CE2的值.
【答案】(1)見解析;(2)16.
【解析】
(1)作BC的垂直平分線交優(yōu)弧BC于A,則點(diǎn)A滿足條件;
(2)利用圓周角定理得到∠ACD=90°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠CDE=∠BAC=45°,通過判斷△DCE為等腰直角三角形得到CE=CD,然后根據(jù)勾股定理得到AC2+CE2=AC2+CD2=AD2.
解:(1)如圖1,點(diǎn)A為所作;
(2)如圖2,連接CD,
∵AD為直徑,
∴∠ACD=90°,
∵∠CDE=∠BAC=45°,
∴△DCE為等腰直角三角形,
∴CE=CD,
∴AC2+CE2=AC2+CD2=AD2=42=16.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州火車南站廣場計劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象經(jīng)過點(diǎn).
(1)當(dāng)時,且正比例函數(shù)的圖象經(jīng)過點(diǎn).
①若,求的取值范圍;
②若一次函數(shù)的圖象為,且不能圍成三角形,求的值;
(2)若直線與軸交于點(diǎn),且,求的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運(yùn)輸量來估算,若租兩車合運(yùn),10天可以完成任務(wù),若甲車的效率是乙車效率的2倍.
(1)甲、乙兩車單獨(dú)完成任務(wù)分別需要多少天?
(2)已知兩車合運(yùn)共需租金65000元,甲車每天的租金比乙車每天的租金多1500元.試問:租甲乙車兩車、單獨(dú)租甲車、單獨(dú)租乙車這三種方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價元,領(lǐng)帶每條定價元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
①西裝和領(lǐng)帶都按定價的付款;②買一套西裝送一條領(lǐng)帶。
現(xiàn)某客戶要到該服裝廠購買西裝套,領(lǐng)帶條。
(1)若該客戶按方案①購買,需付款多少元?(用含的代數(shù)式表示);
(2)若該客戶按方案②購買,需付款多少元?(用含的代數(shù)式表示);
(3)若,通過計算說明此時按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接對角線垂直且相等的四邊形各邊中點(diǎn),所得四邊形是( )
A. 平行四邊形B. 矩形C. 菱形D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)將一副三角板按圖甲的位置放置,那么∠AOD和∠BOC相等嗎?∠AOC和∠BOD在數(shù)量上有何關(guān)系?說明理由.
(2)若將這副三角板按圖乙所示擺放,三角板的直角頂點(diǎn)重合在點(diǎn)O處.上述關(guān)系還成立嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com