【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)軸于點(diǎn),現(xiàn)將直線(xiàn)繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)45°軸于點(diǎn),則直線(xiàn)的函數(shù)表達(dá)式是_________

【答案】

【解析】

過(guò)點(diǎn)CAB于點(diǎn)F,根據(jù)旋轉(zhuǎn)可得△FCA是等腰直角三角形,得到FC=AF,設(shè)C點(diǎn)的坐標(biāo)為,根據(jù)A,B的坐標(biāo)可求出AB所在直線(xiàn)的解析式為,根據(jù)直線(xiàn)垂直的特點(diǎn)可以求出FC所在的直線(xiàn)解析式為,聯(lián)立可得F的坐標(biāo)為,根據(jù)勾股定理可得出FCAF的值,然后聯(lián)立式子可求出C點(diǎn)的坐標(biāo),進(jìn)而求的解析式

過(guò)點(diǎn)CAB于點(diǎn)F.

設(shè)直線(xiàn)AB所在的直線(xiàn)解析式為,由題可知,,得

設(shè)直線(xiàn)CF所在直線(xiàn)的解析式為

直線(xiàn)AB與直線(xiàn)CF垂直

聯(lián)立方程組得

解得

F ,根據(jù)題意可得

△FCA是等腰直角三角形

FC=FA

得到

整理可得

得到

解方程可得:(舍去)

所以得到C點(diǎn)的坐標(biāo)為

設(shè)AC所在直線(xiàn)的解析式為

A,C代入可得

∴直線(xiàn)AC的函數(shù)表達(dá)式為

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.購(gòu)買(mǎi)張彩票就中獎(jiǎng)是不可能事件

B.概率為的事件是不可能事件

C.任意畫(huà)一個(gè)六邊形,它的內(nèi)角和等于是必然事件

D.中任取個(gè)不同的數(shù),分別記為,那么的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線(xiàn) AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn))與軸交于AB兩點(diǎn)(點(diǎn)BA的右側(cè)),與軸交于點(diǎn)C,D是拋物線(xiàn)的頂點(diǎn).

1)當(dāng)時(shí),求頂點(diǎn)D 的坐標(biāo)

2)若OD = OB,求的值;

3)設(shè)EA,B兩點(diǎn)間拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)A,B),過(guò)點(diǎn)EEH軸,垂足為H,交直線(xiàn)BC于點(diǎn)F. 記線(xiàn)段EF的長(zhǎng)為t,若t的最大值為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)種子店都銷(xiāo)售“黃金1號(hào)”玉米種子.在甲店,該種子的價(jià)格為 5 / kg,如果一次購(gòu)買(mǎi)2 kg 以上的種子,超過(guò) 2 kg 部分的種子的價(jià)格打8折.在乙店,不論一次購(gòu)買(mǎi)該種子的數(shù)量是多少,價(jià)格均為4.5 / kg

1)根據(jù)題意,填寫(xiě)下表:

2)設(shè)一次購(gòu)買(mǎi)種子的數(shù)量為 kg. 在甲店購(gòu)買(mǎi)的付款金額記為元,在乙店購(gòu)買(mǎi)的付款金額為元,分別求,關(guān)于的函數(shù)解析式;

3 若在同一店中一次購(gòu)買(mǎi)種子的付款金額是36元,則最多可購(gòu)買(mǎi)種子______ kg.若在同一店中一次購(gòu)買(mǎi)種子10 kg,則最少付款金額是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),拋物線(xiàn)分別交軸于、兩點(diǎn)(點(diǎn)在點(diǎn)的側(cè)),與軸交于點(diǎn),連接,

1)如圖1,求的值;

2)如圖2,軸上一點(diǎn)(不與點(diǎn)、重合),過(guò)點(diǎn)軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn),交直線(xiàn)于點(diǎn)

①當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),連接AF,當(dāng)時(shí),求的長(zhǎng).

②當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),若、中有兩條線(xiàn)段相等,此時(shí)點(diǎn)的坐標(biāo)_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)Lyx2+bx+c經(jīng)過(guò)點(diǎn)M2,﹣3),與y軸交于點(diǎn)C0,﹣3).

1)求拋物線(xiàn)L的表達(dá)式;

2)試判斷拋物線(xiàn)Lx軸交點(diǎn)的情況;

3)平移該拋物線(xiàn),設(shè)平移后的拋物線(xiàn)為L,拋物線(xiàn)L的頂點(diǎn)記為P,它的對(duì)稱(chēng)軸與x軸交于點(diǎn)Q,已知點(diǎn)N2,﹣8),怎樣平移才能使得以M、NPQ為頂點(diǎn)的四邊形為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)34,45,若添加一個(gè)數(shù)4,則發(fā)生變化的統(tǒng)計(jì)量是( )

A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建筑工人用邊長(zhǎng)相等的正六邊形、正方形、正三角形三種瓷磚鋪設(shè)地面,正方形瓷磚分黑白兩種顏色,密鋪成圖(1)的形狀.用水泥澆筑前,為方便施工,工人要先把瓷磚按圖1方式先擺放好,一工人擺放時(shí),無(wú)意間將3塊黑色正方形瓷磚上翻到一個(gè)正六邊形的上面,其中三個(gè)正方形的一條邊分別和正六邊形的三條邊重合,如圖(2)所示.按圖(2)方式給各點(diǎn)作上標(biāo)注,若正方形的邊長(zhǎng),則_____(不考慮瓷磚的厚度)

查看答案和解析>>

同步練習(xí)冊(cè)答案